DAY47 198.打家劫舍 + 213.打家劫舍II + 337.打家劫舍 III

198.打家劫舍

题目要求:你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

  • 示例 1:
  • 输入:[1,2,3,1]
  • 输出:4

解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。   偷窃到的最高金额 = 1 + 3 = 4 

思路

dp数组表示当前偷窃的最大金额,dp[i]表示偷窃到'i'位置能够获得的最大金额。所以状态转移方程:dp[i] = max(dp[i-1], dp[i-2]+value[i])。初始条件dp[0] = value[0]和dp[1] = max(nums[0], nums[1])。

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.empty()) return 0;
        if (nums.size() == 1) return nums[0];
        if (nums.size() == 2) return max(nums[0], nums[1]);
        vector<int> dp(nums.size() + 1, 0);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); ++i) {
            dp[i] = max(dp[i-1], dp[i-2]+nums[i]);
        }
        return dp[nums.size()-1];
    }
};

第一次提交没有考虑nums数组的大小小于等于2的特殊情况。

213.打家劫舍II

题目要求:你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

示例 1:

  • 输入:nums = [2,3,2]

  • 输出:3

  • 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

  • 示例 2:

  • 输入:nums = [1,2,3,1]

  • 输出:4

  • 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

  • 示例 3:

  • 输入:nums = [0]

  • 输出:0

思路

nums数组成环了,对于一个数组,成环的话主要有如下三种情况:

  • 情况一:考虑不包含首尾元素

  • 情况二:考虑包含首元素,不包含尾元素

  • 情况三:考虑包含尾元素,不包含首元素

注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了

分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍就是一样的了。

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2);
        int result2 = robRange(nums, 1, nums.size() - 1);
        return max(result1, result2);
    }

    int robRange(vector<int>& nums, int start, int end){
        if (end == start) return nums[start];
        vector<int> dp(nums.size(), 0);
        dp[start] = nums[start];
        dp[start+1] = max(dp[start], nums[start+1]);
        for (int i = start + 2; i <= end; ++i) {
            dp[i] = max(dp[i-2] + nums[i], dp[i-1]);
        }
        return dp[end];
    }
};

因为首尾不能同时出现,干脆就把他俩分开分别考虑。

 337.打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

思路

二叉树上的dp操作,第一反应感觉和安装监控探头的题目有点相似。

对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算

如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”

而动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解

  • 确定递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

参数为当前节点,代码如下:

vector<int> robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数

  • 确定终止条件

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

if (cur == NULL) return vector<int>{0, 0};

 这也相当于dp数组的初始化

  • 确定遍历顺序

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

代码如下:

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
  • 确定单层递归的逻辑

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
  • 举例推导dp数组

以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }

    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        int val1 = cur->val + left[0] + right[0];
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};
  • 时间复杂度:O(n),每个节点只遍历了一次
  • 空间复杂度:O(log n),算上递推系统栈的空间

总结

第一点对树上的递归操作还是不熟悉,一段时间不练感觉有点忘了。第二点是动态规划融合在数中,用树结构代表了dp数组。dp[节点]是一个长度为2的数组,下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。这个思路很厉害。

这道题是树形DP的入门题目,通过这道题目大家应该也了解了,所谓树形DP就是在树上进行递归公式的推导。

所以树形DP也没有那么神秘!

只不过平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/122448.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WordPress页脚配置备案号

进入后台管理页面 后台管理页面地址一般是&#xff1a;域名/wp-admin 在指定位置加入代码 点击外观 -> 主题文件编辑器 在右侧的文件中选择 footer.php,[注意&#xff1a;上方的主题需要是你自己选择的对应的主题]在 </footer>标签这一行的上一行中加入代码 <di…

学习在echarts中优化数据视图dataView样式带表格样式,支持复制功能

学习在echarts中优化数据视图dataView样式 带表格样式 toolbox里有个dataView视图模式&#xff0c;里面的数据没有对整&#xff0c;影响展示效果&#xff0c;情形如下&#xff1a; 像这种标题跟数据没有整齐对应上&#xff0c;看起来乱 改问题解决方案为&#xff0c;option 》…

风力等级划分

图片来源于网络

Spark 基础知识点

Spark 基础 本文来自 B站 黑马程序员 - Spark教程 &#xff1a;原地址 什么是Spark 什么是Spark 1.1 定义&#xff1a;Apache Spark是用于大规模数据&#xff08;large-scala data&#xff09;处理的统一&#xff08;unified&#xff09;分析引擎 Spark最早源于一篇论文 Re…

【IP固定】地平线开发板如何实现重启IP地址不变

文章目录 1 背景2 临时解决方案3 真正解决方案 1 背景 重新刷了地平线工具链OE包中BSP20230417的系统镜像&#xff0c;结果只能串口连接&#xff0c;无法实现网口连接&#xff0c;串口连接后&#xff0c;发现eth0和eth1的IP竟然是一样的&#xff0c;如下图所示 还挺少见的。 …

单目标应用:粒子群优化算法(PSO)求解微电网优化MATLAB

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、粒子群优化算法&#xff08;PSO&#xff09;求解微电网优化 &#xff08;1&#xff09;部分代码 close all; clear ; clc; global P_load; %电负荷 gl…

低代码平台的探究与分析

目录 1.低代码行业现状 2.产品分析 2.1可视化应用开发 2.2流程管理 2.3特别支持整个平台源码合作 3.架构和技术 3.1技术栈 4.规划和展望 低代码平台&#xff08;Low-code Development Platform&#xff09;是一种让开发者通过拖拽和配置&#xff0c;而非传统的手动编写…

物联网水表有什么弊端吗?

物联网水表作为新一代智能水表&#xff0c;虽然在很大程度上提高了水资源的管理效率&#xff0c;但也存在一定的弊端。在这篇文章中&#xff0c;我们将详细讨论物联网水表的弊端&#xff0c;以帮助大家更全面地了解这一技术。 一、安全隐患 1.数据泄露&#xff1a;物联网水表通…

12.(vue3.x+vite)组件间通信方式之$attrs与$listeners

前端技术社区总目录(订阅之前请先查看该博客) 示例效果 在vue3中的$attrs的变化 $ listeners已被删除合并到$ attrs中。 $ attrs现在包括class和style属性。 也就是说在vue3中$ listeners不存在了。vue2中$listeners是单独存在的。 在vue3 $attrs包括class和style属性, vue…

运动蓝牙耳机哪个品牌好?推荐五款好用的运动耳机

​无论你是赛跑者、自行车手还是健身爱好者&#xff0c;运动耳机绝对是你追求极致、超越自我的最佳搭档。它不仅具备优秀的音质和耐用的性能&#xff0c;更重要的是&#xff0c;它可以激发你的运动激情&#xff0c;让你的运动生活更加充满动力。推荐以下几款不错的运动耳机给大…

网站引流绝技:如何通过外链持续给网站带来高质量流量

做网站的人&#xff0c;不论是写文章还是搞外链&#xff0c;最终都是希望能获得更多的流量。既然是为了搞来流量和收入&#xff0c;你可能还不知道有一种方法既能搞来外链还能带来源源不断的高质量流量。 这个方法我在8年前就已经掌握&#xff0c;而且至今我仍认为它是一种有效…

OSPF下的MGRE实验

一、实验要求 1、R1-R3-R4构建全连的MGRE环境 2、R1-R5-R6建立hub-spoke的MGRE环境&#xff0c;其中R1为中心 3、R1-R3...R6均存在环回网段模拟用户私网&#xff0c;使用OSPF使全网可达 4、其中R2为ISP路由器&#xff0c;仅配置IP地址 二、实验拓扑图 三、实验配置 1、给各路…

iOS如何通过在线状态来监听其他设备登录的状态

前提条件 1、完成 3.9.1 或以上版本 SDK 初始化 2、了解环信即时通讯 IM API 的 使用限制。 3、已联系商务开通在线状态订阅功能 实现方法 你可以通过调用 subscribe 方法订阅自己的在线状态&#xff0c;从而可以监听到其他设备在登录和离线时的回调&#xff0c;示例代码如下…

(六)库存超卖案例实战——使用mysql分布式锁解决“超卖”问题

前言 本节内容是关于使用分布式锁解决并发访问“超卖”问题的最终篇&#xff0c;在前面的章节中我们介绍了使用mysql的行锁、乐观锁、悲观锁解决并发访问导致的超卖问题&#xff0c;存在的问题是行锁、乐观锁、悲观锁不太灵活&#xff0c;需要和具体的业务耦合到一起&#xff…

数据结构与算法C语言版学习笔记(4)-栈与队列再回顾

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言&#xff1a;一、栈的定义&#xff1a;栈(stack)是限定仅在表尾进行插入和删除操作的线性表&#xff08;1&#xff09;栈是特殊的线性表&#xff08;2&#xff…

Sui学术研究奖公布,资助研究者探索人工智能、能源市场和区块链游戏

Sui基金会高兴地宣布首轮Sui学术研究奖&#xff08;SARAs&#xff09;的获奖者。SARAs计划提供资助&#xff0c;支持推动Sui区块链技术的研究。学术和研究界对我们的初次征集呈现出大量高质量的提案。 已接受的九个提案涵盖了各种主题&#xff0c;如token经济学、智能合约机制…

Java 设计模式——状态模式

目录 1.概述2.结构3.案例实现3.1.抽象状态类3.2.具体状态类3.3.上下文类3.4.测试 4.优缺点5.使用场景 1.概述 【例】通过按钮来控制一个电梯的状态&#xff0c;电梯有开门状态&#xff0c;关门状态&#xff0c;停止状态&#xff0c;运行状态。每一种状态改变&#xff0c;都有可…

银行APP虚拟金额软件,建设农业工商邮政余额生成器,易语言开源版

用易语言开发了一个虚拟余额装逼软件&#xff0c;可以生成虚拟的余额截图&#xff0c;就是APP端的截图&#xff0c;用的画板组件&#xff0c;但是生成出来的图片是非常高清的&#xff0c;软件里面因为图片是缩放状态&#xff0c;所以看起来有点失真的感觉&#xff0c;生成图片的…

Mysql进阶-视图篇

介绍 视图&#xff08;View&#xff09;是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的。 通俗的讲&#xff0c;视图只保存了查询的SQL逻辑&#xff0c;不保存查询结果。…

汇编-EQU伪指令(数值替换)

EQU伪指令将一个符号名称与一个整数表达式或一个任意文本相关联&#xff0c; 它有3种格式 在第一种格式中&#xff0c; expression必须是一个有效的整数表达式。在第二种格式中&#xff0c; symbol是一个已存在的符号名称&#xff0c; 已经用或EQU定义过。在第三种格式中&…