5 Tensorflow图像识别(下)模型构建

上一篇:4 Tensorflow图像识别模型——数据预处理-CSDN博客

1、数据集标签

上一篇介绍了图像识别的数据预处理,下面是完整的代码:

import os
import tensorflow as tf

# 获取训练集和验证集目录
train_dir = os.path.join('cats_and_dogs_filtered/train')
validation_dir = os.path.join('cats_and_dogs_filtered/validation')


# 模型参数设置
BATCH_SIZE = 100

# 图片尺寸统一为150*150
IMG_SHAPE = 150

# 处理图像尺寸
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, )

train_data_gen = img_generator.flow_from_directory(directory=train_dir,
                                                   shuffle=True,
                                                   batch_size=BATCH_SIZE,
                                                   target_size=(IMG_SHAPE, IMG_SHAPE),
                                                   class_mode='binary')
val_data_gen = img_generator.flow_from_directory(directory=validation_dir,
                                                 shuffle=True,
                                                 batch_size=BATCH_SIZE,
                                                 target_size=(IMG_SHAPE, IMG_SHAPE),
                                                 class_mode='binary')

上一篇提到系统的输入是“特征-标签”对,特征是输入的图片,标签就是标记该图片是猫还是狗。上面的代码如何知道输入的照片是猫还是狗?

这里用到了keras的一个函数flow_from_directory(),从目录中生成数据流,子目录会自动帮你生成标签。先看看train训练集的这两个子目录生成的标签是什么:

使用下面代码查看

print(train_data_gen.class_indices)

运行结果:

Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
{'cats': 0, 'dogs': 1}

从运行结果可以看到,猫的照片系统自动打上了0的标签,狗的标签是1。

2、Relu激活函数

构建模型的完整代码如下:

import os
import tensorflow as tf
import numpy as np



# 获取训练集和验证集目录
train_dir = os.path.join('cats_and_dogs_filtered/train')
validation_dir = os.path.join('cats_and_dogs_filtered/validation')

# 模型参数设置
BATCH_SIZE = 100

# 图片尺寸统一为150*150
IMG_SHAPE = 150

# 处理图像尺寸
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, )

# 训练数据
train_data_gen = img_generator.flow_from_directory(directory=train_dir,
                                                   shuffle=True,
                                                   batch_size=BATCH_SIZE,
                                                   target_size=(IMG_SHAPE, IMG_SHAPE),
                                                   class_mode='binary')

# 验证数据
val_data_gen = img_generator.flow_from_directory(directory=validation_dir,
                                                 shuffle=True,
                                                 batch_size=BATCH_SIZE,
                                                 target_size=(IMG_SHAPE, IMG_SHAPE),
                                                 class_mode='binary')


model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
    tf.keras.layers.MaxPooling2D(2, 2),

    tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2, 2),

    tf.keras.layers.Conv2D(100, (3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2, 2),

    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(2)

])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
              )

EPOCHS = 20
history = model.fit_generator(
    train_data_gen,
    steps_per_epoch=int(np.ceil(2000 / float(BATCH_SIZE))),
    epochs=EPOCHS,
    validation_data=val_data_gen,
    validation_steps=int(np.ceil(1000 / float(BATCH_SIZE)))
)

model中加入了和之前不一样的代码:

tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),

这里使用了卷积神经,主要是为了突出区分不同对象的特征。一张图片的信息很多的,但往往我们只需要一些特征进行训练就可以了,后续会详细介绍。

现在先介绍 activation='relu',激活函数Relu。

ReLU,全称是线性整流函数(Rectified Linear Unit),是人工神经网络中常用的激活函数。它的图像如下:

当x<=0时,f(x)=0;

当x>0时,f(x)=x;

可以运行代码看看:

例1:

import tensorflow as tf


x = -19
print(tf.nn.relu(x))

运行结果:
tf.Tensor(0, shape=(), dtype=int32)

输入-19,使用relu激活函数后的结果为0

例2:

import tensorflow as tf


x = 8
print(tf.nn.relu(x))

运行结果:

tf.Tensor(8, shape=(), dtype=int32)

3、损失函数

代码:


model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
              )
 

其中损失函数为SparseCategoricalCrossentropy,它是用于计算多分类问题的交叉熵,如果是两个或两个以上的分类问题可以始终这样设置。对其原理及计算过程的读者可以自行百度,此处不详细介绍。

4、训练过程详解
(1)训练准确率

运行上面的完整代码:

可以看到训练集和验证集的loss值在慢慢下降,准确率在提升。

划线部分是最后一个epoch的训练结果:

accuracy:0.8175,也就是说你的神经网络在分类训练数据方面的准确率约为82%;

val_accuracy:0.7160,在验证集的准确率约为72%

(2)batch_size批次大小

代码中batche_size设置的大小为100,意思是每批次生成的样本数量为100。

例如上述代码的train训练集一共有2000张图片,一个周期(epoch)分20个批次(2000/100=20)样本数据进行训练,每个批次训练完后利用优化器更新模型参数。

所以一个周期(epoch)的模型参数更新次数就是20:2000/batch_size=20

截图中红色部分,就是一个epoch分了20个批次用来更新模型参数。

训练结果会因为模型的参数的设置、训练集图片的数量等等原因结果大不相同,学习的时候可以自己动手去调整模型参数来看看训练结果。



 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/120425.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

3.4、Linux小程序:进度条

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 回车与换行的概念和区别 行缓冲区概念 进度条代码 version1 version2 version3 回车与换行的概念和区别 换行\n&#xff0c;回车\r 似乎无需多言 行缓冲区概念 这里我们通过例子来简单理解即可&#xff0c;深入…

基于单片机的智能扫地机设计

概要 本文主要设计一个简单的智能扫地机。该扫地机的核心控制元器件是stc89c52&#xff0c;具有编写程序简单&#xff0c;成本普遍较低&#xff0c;功能较多&#xff0c;效率特别高等优点&#xff0c;因此在市场上得到很大的应用。除此之外&#xff0c;该扫地机能够自动避开障碍…

C语言实现利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用A表示,60-89分之间的用B表示,60分以下的用C表示

完整代码&#xff1a; /*利用条件运算符的嵌套来完成此题&#xff1a;学习成绩>90分的同学用A表示&#xff0c;60-89分之间 的用B表示&#xff0c;60分以下的用C表示*/ #include<stdio.h>int main(){int score;char grade;printf("请输入你的成绩&#xff1a;&q…

IGP高级特性简要介绍(OSPF-上篇)

OSPF高级特性 一、OSPF_提升故障收敛及网络恢复速度 1.FRR与BFD快速恢复故障 1.1 FRR 在传统转发模式下&#xff0c;当到达同一个目的网络存在多条路由时&#xff0c;路由器总是选择最优路由使用&#xff0c;并且下发到FIB表指导数据转发。 当最优路由故障时&#xff0c;需…

Ubuntu18.04安装pcl-1.12.1,make时报错:/usr/bin/ld: cannot find -lvtkIOMPIImage

解决方案&#xff1a; 在vtk安装包中&#xff0c;重新打开cmake-gui&#xff0c;然后勾选上VTK_Group_MPI和VTK_Group_Imaging。 cd VTK-8.2.0 cd build cmake-gui然后重新编译生成。 make -j8 # 或者j4,量力而行。 sudo make install 就可以解决了。 然后重新回到pcl安装…

虚拟机没有桥接模式--物理机WiFi不见了--注册表修复

我们知道虚拟机有三种模式&#xff1a; vmnet0 桥接模式&#xff1b;vmnet1 仅主机模式&#xff1b;vmnet8 NAT模式 我自己以前一直用的NAT模式&#xff0c;今天突然要用到桥接模式&#xff0c;发现无法切换... 我下面这个是后面弄好了的&#xff0c;最开始是没有显示桥接模式…

Vue 3 中,watch 和 watchEffect 的区别

结论先行&#xff1a; watch 和 watchEffect 都是监听器&#xff0c;都是用来监听响应式数据的变化并执行相应操作。区别是&#xff1a; watch&#xff1a;需要指明要监听的数据&#xff0c;而且在回调函数中可以获取到属性变化的前后值&#xff1b; 适用于需要精确控制监视…

quickapp_快应用_快应用组件

快应用组件 web组件web页面与快应用页面通信网页接收/发送消息网页接收消息 快应用页面接收/发送消息给网页发送消息 通信前提- trustedurl web组件 作用&#xff1a;用于显示在线的 html 页面(可以嵌入三方页面或者某些不太重要的页面) 缺点&#xff1a;打开会比原生慢一点&…

容联七陌携手岚时科技,解决医美机构回访3大痛点

近日&#xff0c;岚时科技研发中心联合容联七陌发布了全新的智能呼叫中心系统&#xff0c;5大功能模块解决了医美机构回访过程中的3大难题&#xff1a;客户资产保全困难、客户回访技术被卡脖子、回访人员&#xff08;客服、咨询&#xff09;效率管理困难。 “智能呼叫中心”通过…

Camtasia2024破解版电脑屏幕录制剪辑软件

屏幕录制剪辑 TechSmith Camtasia for Mac v2021是 TechSmith 公司所开发出一款专业屏幕录像和编辑&#xff0c; Camtasia Studio2024版是由TechSmith公司官方进行汉化推出的最新版本,除2023版以下版本均没有官方汉化。 同时TechSmith公司打击第三方贩卖Camtasia Studio汉化的…

MS2111多点低压差分(M-LVDS)线路驱动器和接收器

MS2111 是多点低压差分 (M-LVDS) 线路驱动器和接收器。经过 优化&#xff0c;可运行在高达 200Mbps 的信号速率下。所有部件均符合 M LVDS 标准 TIA / EIA-899 。该驱动器的输出支持负载低至 30Ω 的多 点总线。 MS2111 的接收器属于 Type-2 &#xff0c; 可在 -1…

第三章:人工智能深度学习教程-基础神经网络(第五节-了解多层前馈网络)

让我们了解反向传播网络 (BPN) 中的误差是如何计算的以及权重是如何更新的。 考虑下图中的以下网络。 反向传播网络(BPN) 上图中的网络是一个简单的多层前馈网络或反向传播网络。它包含三层,输入层有两个神经元 x 1和 x 2,隐藏层有两个神经元 z 1和 z 2,输出层有一个神经…

基于element-ui封装可配置表单组件

“vue”: “^2.7.13” “element-ui”: “^2.15.7” 代码地址 【说明】 该组件时使用vue3&#xff08;vue2.7&#xff09;语法封装&#xff0c;使用时可用vue2语法使用也可以使用vue3语法使用 一、vue2语法使用案例 基础用法 <template><div class"form-demo…

擎创动态 | 开箱即用!擎创科技联合中科可控推出大模型一体机

一、金融行业大模型一体机发布 10月26日至27日&#xff0c;2023金融科技安全与创新大会顺利召开。会上&#xff0c;中科可控联合擎创科技、卓世科技、文因互联、百川智能、捷通华声、智谱华章、易道博识等9大厂商&#xff0c;发布了9款金融行业大模型一体机&#xff0c;为金融…

加速度jsudo:小企业会遇到哪些瓶颈期?

什么是瓶颈期&#xff1f;瓶颈期&#xff0c;就是你无论怎么努力&#xff0c;成绩都是上不去&#xff0c;还是停留在原地&#xff1b;而自己表现的还是很匆忙&#xff0c;却不知道如何下手&#xff1f;就像水桶效益一样&#xff0c;水桶的木板高度层次不齐&#xff0c;像极了自…

安防监控系统EasyCVR平台设备通道绑定AI算法的功能设计与开发实现

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台可拓展性强、…

Mysql数据库的备份和恢复及日志管理

一、数据备份概述 1.1 备份的分类 完全备份&#xff1a;整个数据库完整地进行备份 增量备份&#xff1a;在完全备份的基础之上&#xff0c;对后续新增的内容进行备份 冷备份&#xff1a;关机备份&#xff0c;停止mysql服务&#xff0c;然后进行备份 热备份&#xff1a;开机备…

从零开始的C++(十四)

继承&#xff1a; 作用&#xff1a;减少重复代码&#xff0c;简化程序。 用法&#xff1a; class b&#xff1a;public a {//...b中成员 } 在如上代码中&#xff0c;b类以public的方式继承了a类。规定a类是父类、基类&#xff0c;b类是子类、派生类。 关于继承方式&#xf…

[动态规划] (十一) 简单多状态 LeetCode 面试题17.16.按摩师 和 198.打家劫舍

[动态规划] (十一) 简单多状态: LeetCode 面试题17.16.按摩师 和 198.打家劫舍 文章目录 [动态规划] (十一) 简单多状态: LeetCode 面试题17.16.按摩师 和 198.打家劫舍题目分析题目解析状态表示状态转移方程初始化和填表顺序 代码实现按摩师打家劫舍 总结 注&#xff1a;本题与…

iOS 让界面元素的文字随着语言的更改而变化——本地化文字跟随

在我的 App 内置的设置中&#xff0c;修改了语言&#xff0c;这时需要让当前界面的文本跟着改变语言。 解决方法是&#xff1a;添加一个观察者&#xff0c;观察 localize 本地语言的通知&#xff0c;然后一有变化就调用自定义的方法执行操作。&#xff08;而设置中其实是改变了…