基于设深度学习的人脸性别年龄识别系统 计算机竞赛

文章目录

  • 0 前言
  • 1 课题描述
  • 2 实现效果
  • 3 算法实现原理
    • 3.1 数据集
    • 3.2 深度学习识别算法
    • 3.3 特征提取主干网络
    • 3.4 总体实现流程
  • 4 具体实现
    • 4.1 预训练数据格式
    • 4.2 部分实现代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习机器视觉的人脸性别年龄识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题描述

随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越发广泛。如医疗影像识别、无人驾驶车载视觉、通用物体识别、自然场景下的文本识别等,根据不同的应用场景,人脸研究方向可以分为人脸检测、身份识别、性别识别、年龄预测、种族识别、表情识别等。近年来,人脸身份识别技术发展迅猛,在生活应用中取得了较好的效果,也逐渐趋于成熟,而年龄识别与性别预测,仍然是生物特征识别研究领域中一项具有挑战性的课题。

课题意义

相比人脸性别属性而言,人脸年龄属性的研究更富有挑战性。主要有两点原因,首先每个人的年龄会随着身体健康状况、皮肤保养情况而表现得有所不同,即便是在同一年,表现年龄会随着个人状态的不同而改变,人类识别尚且具有较高难度。其次,可用的人脸年龄估计数据集比较少,不同年龄的数据标签收集不易,现有大多数的年龄数据集都是在不同的复杂环境下的照片、人脸图片存在光照变化较复杂、部分遮挡、图像模糊、姿态旋转角度较大等一系列问题,对人脸模型的鲁棒性产生了较大的影响。

2 实现效果

这里废话不多说,先放上大家最关心的实现效果:

输入图片:
在这里插入图片描述

识别结果:

在这里插入图片描述

或者实时检测
在这里插入图片描述
在这里插入图片描述

3 算法实现原理

3.1 数据集

学长收集的数据集:
该人脸数据库的图片来源于互联网的爬取,而非研究机构整理,一共含有13000多张人脸图像,在这个数据集中大约有1860张图片是成对出现的,即同一个人的2张不同照片,有助于人脸识别算法的研究,图像标签中标有人的身份信息,人脸坐标,关键点信息,可用于人脸检测和人脸识别的研究,此数据集是对人脸算法效果验证的权威数据集.

在这里插入图片描述
该数据集包含的人脸范围比较全面,欧亚人种都有。

3.2 深度学习识别算法

卷积神经网络是常见的深度学习架构,而在CNN出现之前,图像需要处理的数据量过大,导致成本很高,效率很低,图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。CNN的出现使得提取特征的能力变得更强,为更多优秀网络的研究提供了有力的支撑。CNN的核心思想是利用神经网络模拟人脑视觉神经系统,构造多个神经元并建立彼此之间的联系。不同的神经元进行分工,浅层神经元处理低纬度图像特征,深层神经元处理图像高级特征、语义信息等,CNN的网络结构主要由卷积层、BN层、激活层、池化层、全连接层、损失函数层构成,多个层协同工作实现了特征提取的功能,并通过特有的网络结构降低参数的数量级,防止过拟合,最终得到输出结果.

CNN传承了多层感知机的思想,并受到了生物神经科学的启发,通过卷积的运算模拟人类视觉皮层的“感受野”。不同于传统的前馈神经网络,卷积运算对图像的区域值进行加权求和,最终以神经元的形式进行输出。前馈神经网络对每一个输入的信号进行加权求和:

  • (a)图是前馈神经网络的连接方式
  • (b)图是CNN的连接方式。

在这里插入图片描述
cnn框架如下:
在这里插入图片描述

3.3 特征提取主干网络

在深度学习算法研究中,通用主干特征提取网络结合特定任务网络已经成为一种标准的设计模式。特征提取对于分类、识别、分割等任务都是至关重要的部分。下面介绍本文研究中用到的主干神经网络。

ResNet网络
ResNet是ILSVRC-2015的图像分类任务冠军,也是CVPR2016的最佳论文,目前应用十分广泛,ResNet的重要性在于将网络的训练深度延伸到了数百层,而且取得了非常好的效果。在ResNet出现之前,网络结构一般在20层左右,对于一般情况,网络结构越深,模型效果就会越好,但是研究人员发现加深网络反而会使结果变差。

在这里插入图片描述

人脸特征提取我这里选用ResNet,网络结构如下:
在这里插入图片描述

3.4 总体实现流程

在这里插入图片描述

4 具体实现

4.1 预训练数据格式

在这里插入图片描述

在这里插入图片描述

4.2 部分实现代码

训练部分代码:



    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    from six.moves import xrange
    from datetime import datetime
    import time
    import os
    import numpy as np
    import tensorflow as tf
    from data import distorted_inputs
    from model import select_model
    import json
    import re


    LAMBDA = 0.01
    MOM = 0.9
    tf.app.flags.DEFINE_string('pre_checkpoint_path', '',
                               """If specified, restore this pretrained model """
                               """before beginning any training.""")
    
    tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0',
                               'Training directory')
    
    tf.app.flags.DEFINE_boolean('log_device_placement', False,
                                """Whether to log device placement.""")
    
    tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,
                                'Number of preprocessing threads')
    
    tf.app.flags.DEFINE_string('optim', 'Momentum',
                               'Optimizer')
    
    tf.app.flags.DEFINE_integer('image_size', 227,
                                'Image size')
    
    tf.app.flags.DEFINE_float('eta', 0.01,
                              'Learning rate')
    
    tf.app.flags.DEFINE_float('pdrop', 0.,
                              'Dropout probability')
    
    tf.app.flags.DEFINE_integer('max_steps', 40000,
                              'Number of iterations')
    
    tf.app.flags.DEFINE_integer('steps_per_decay', 10000,
                                'Number of steps before learning rate decay')
    tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,
                              'Learning rate decay')
    
    tf.app.flags.DEFINE_integer('epochs', -1,
                                'Number of epochs')
    
    tf.app.flags.DEFINE_integer('batch_size', 128,
                                'Batch size')
    
    tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
                              'Checkpoint name')
    
    tf.app.flags.DEFINE_string('model_type', 'default',
                               'Type of convnet')
    
    tf.app.flags.DEFINE_string('pre_model',
                                '',#'./inception_v3.ckpt',
                               'checkpoint file')
    FLAGS = tf.app.flags.FLAGS
    
    # Every 5k steps cut learning rate in half
    def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
    
        print('decay [%f] every [%d] steps' % (decay_rate, at_step))
        def _decay(lr, global_step):
            return tf.train.exponential_decay(lr, global_step,
                                              at_step, decay_rate, staircase=True)
        return _decay
    
    def optimizer(optim, eta, loss_fn, at_step, decay_rate):
        global_step = tf.Variable(0, trainable=False)
        optz = optim
        if optim == 'Adadelta':
            optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
            lr_decay_fn = None
        elif optim == 'Momentum':
            optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
            lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
    
        return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
    
    def loss(logits, labels):
        labels = tf.cast(labels, tf.int32)
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=labels, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)
        losses = tf.get_collection('losses')
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = cross_entropy_mean + LAMBDA * sum(regularization_losses)
        tf.summary.scalar('tl (raw)', total_loss)
        #total_loss = tf.add_n(losses + regularization_losses, name='total_loss')
        loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
        loss_averages_op = loss_averages.apply(losses + [total_loss])
        for l in losses + [total_loss]:
            tf.summary.scalar(l.op.name + ' (raw)', l)
            tf.summary.scalar(l.op.name, loss_averages.average(l))
        with tf.control_dependencies([loss_averages_op]):
            total_loss = tf.identity(total_loss)
        return total_loss
    
    def main(argv=None):
        with tf.Graph().as_default():
    
            model_fn = select_model(FLAGS.model_type)
            # Open the metadata file and figure out nlabels, and size of epoch
            input_file = os.path.join(FLAGS.train_dir, 'md.json')
            print(input_file)
            with open(input_file, 'r') as f:
                md = json.load(f)
    
            images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
            logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)
            total_loss = loss(logits, labels)
    
            train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
            saver = tf.train.Saver(tf.global_variables())
            summary_op = tf.summary.merge_all()
    
            sess = tf.Session(config=tf.ConfigProto(
                log_device_placement=FLAGS.log_device_placement))
    
            tf.global_variables_initializer().run(session=sess)
    
            # This is total hackland, it only works to fine-tune iv3
            if FLAGS.pre_model:
                inception_variables = tf.get_collection(
                    tf.GraphKeys.VARIABLES, scope="InceptionV3")
                restorer = tf.train.Saver(inception_variables)
                restorer.restore(sess, FLAGS.pre_model)
    
            if FLAGS.pre_checkpoint_path:
                if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
                    print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)
                    restorer = tf.train.Saver()
                    tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
                    print('%s: Pre-trained model restored from %s' %
                          (datetime.now(), FLAGS.pre_checkpoint_path))


            run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())
    
            checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)
            if tf.gfile.Exists(run_dir) is False:
                print('Creating %s' % run_dir)
                tf.gfile.MakeDirs(run_dir)
    
            tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)
    
            tf.train.start_queue_runners(sess=sess)


            summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
            steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)
            num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epoch
            print('Requested number of steps [%d]' % num_steps)



            for step in xrange(num_steps):
                start_time = time.time()
                _, loss_value = sess.run([train_op, total_loss])
                duration = time.time() - start_time
    
                assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
    
                if step % 10 == 0:
                    num_examples_per_step = FLAGS.batch_size
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)
                    
                    format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')
                    print(format_str % (datetime.now(), step, loss_value,
                                        examples_per_sec, sec_per_batch))
    
                # Loss only actually evaluated every 100 steps?
                if step % 100 == 0:
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)
                    
                if step % 1000 == 0 or (step + 1) == num_steps:
                    saver.save(sess, checkpoint_path, global_step=step)
    
    if __name__ == '__main__':
        tf.app.run()



5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/116521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL中表的增删改查

目录 一、CRUD 二、新增&#xff08;Create&#xff09; &#xff08;1&#xff09;语法 &#xff08;2&#xff09;单行数据全列插入 &#xff08;3&#xff09;多行数据指定列插入 三、查询&#xff08;Retrieve&#xff09; &#xff08;1&#xff09;语法 …

Win11新电脑启动无无线网络连接解决办法

Win11新电脑启动无无线网络连接解决办法 前言一、解决方法 前言 今天笔者在使用学校实验室分配的新电脑时候&#xff0c;发现在新激活的时候需要让我连接到无线网络&#xff0c;但不管鼠标怎么点都操作不了&#xff0c;于是在卡在这里了&#xff0c;唯一的办法就是跳过此页面&…

ZZ038 物联网应用与服务赛题第D套

2023年全国职业院校技能大赛 中职组 物联网应用与服务 任 务 书 (D卷) 赛位号:______________ 竞赛须知 一、注意事项 1.检查硬件设备、电脑设备是否正常。检查竞赛所需的各项设备、软件和竞赛材料等; 2.竞赛任务中所使用的各类软件工具、软件安装文件等,都…

吴恩达《机器学习》5-6:向量化

在深度学习和数值计算中&#xff0c;效率和性能是至关重要的。一个有效的方法是使用向量化技术&#xff0c;它可以显著提高计算速度&#xff0c;减少代码的复杂性。接下来将介绍向量化的概念以及如何在不同编程语言和工具中应用它&#xff0c;包括 Octave、MATLAB、Python、Num…

2023辽宁省数学建模B题数据驱动的水下导航适配区分类预测完整原创论文分享(python求解)

大家好呀&#xff0c;从发布赛题一直到现在&#xff0c;总算完成了辽宁省数学建模B题完整的成品论文。 本论文可以保证原创&#xff0c;保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 B用Python&#xff0b;SPSSPRO求解&…

蓝桥杯每日一题2023.11.3

题目描述 承压计算 - 蓝桥云课 (lanqiao.cn) 题目分析 将重量存入a中&#xff0c;每一层从上到下进行计算&#xff0c;用d进行计算列的重量&#xff0c;当前d的重量应为正上数组和右上数组的个半和并加上自身的重量 计算到30层记录最大最小值&#xff0c;进行比例运算即可 …

工作数字化的中国历程 | 从 OA 到 BPM 到数字流程自动化

业务流程是由“活动”&#xff08;或称“工作任务”&#xff09;构成的&#xff0c;在企业里的所有工作是不是都叫流程&#xff0c;或者属于流程的一部分&#xff0c;这个概念很绕&#xff0c;我觉得没有必要去做学究气的辨析。我曾经提出过一个从工作的两个特性&#xff08;产…

2023年金融科技建模大赛(初赛)开箱点评-基于四川新网银行数据集

各位同学大家好&#xff0c;我是Toby老师。2023年金融科技建模大赛&#xff08;初赛&#xff09;从今年10月14日开始&#xff0c;11月11日结束。 比赛背景 发展数字经济是“十四五”时期的重大战略规划。2023年&#xff0c;中共中央、国务院印发了《数字中国建设整体布局规划》…

20.5 OpenSSL 套接字RSA加密传输

RSA算法同样可以用于加密传输&#xff0c;但此类加密算法虽然非常安全&#xff0c;但通常不会用于大量的数据传输&#xff0c;这是因为RSA算法加解密过程涉及大量的数学运算&#xff0c;尤其是模幂运算&#xff08;即计算大数的幂模运算&#xff09;&#xff0c;这些运算对于计…

想学计算机编程从什么学起?零基础如何自学计算机编程?中文编程开发语言工具箱之渐变标签组构件

想学计算机编程从什么学起&#xff1f;零基础如何自学计算机编程&#xff1f; 给大家分享一款中文编程工具&#xff0c;零基础轻松学编程&#xff0c;不需英语基础&#xff0c;编程工具可下载。 这款工具不但可以连接部分硬件&#xff0c;而且可以开发大型的软件&#xff0c;…

【每日一题】数组中两个数的最大异或值

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;哈希集合 其他语言python3 写在最后 Tag 【哈希集合】【位运算-异或和】【数组】【2023-11-04】 题目来源 421. 数组中两个数的最大异或值 题目解读 找出数组中两个数的最大异或结果。 解题思路 一看数据量达到了 …

【深度学习基础】Pytorch框架CV开发(1)基础铺垫

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

Docker的简单安装

安装环境 CentOS Linux release 8.1.1911 (Core)内核4.18.0-147.el8.x86_64Mini Installation 安装前的准备工作 切换国内源 由于centos源已经过期&#xff0c;所以切换为阿里云的yum源&#xff0c;第二个是docker的仓库 wget -O /etc/yum.repos.d/CentOS-Base.repo https:…

vue需求:实现签章/签字在页面上自由定位的功能(本质:元素在页面上的拖拽)

目录 第一章 效果展示 第二章 了解工具 2.1 draggable 2.1.1 了解draggable 2.1.2 draggable方法 2.1.3 利用例子理解方法 第三章 效果实现 3.1 实现思路 3.2 代码实现 3.2.1 涉及到的点 3.2.2 源代 第一章 效果展示 效果描述&#xff1a;通过点击左边栏的签名和…

C#,数值计算——积分方程与逆理论,构造n点等间隔求积的权重的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 构造n点等间隔求积的权重 /// Constructs weights for the n-point equal-interval quadrature /// from O to(n-1)h of a function f(x) times an arbitrary /// (pos…

十年JAVA搬砖路——Linux搭建Ldap服务器。

1.安装命令 yum -y install openldap compat-openldap openldap-clients openldap-servers openldap-servers-sql openldap-devel2.启动ldap systemctl start slapd systemctl enable slapd3.修改密码 slappasswd Aa123456获得返回的密码加密密码串&#xff1a; {SSHA}DkSw0…

免费(daoban)gpt,同时去除广告

一. 内容简介 免费(daoban)gpt&#xff0c;同时去除广告&#xff0c;https://chat18.aichatos.xyz/&#xff0c;也可当gpt用&#xff0c;就是有点广告&#xff0c;大家也可以支持一下 二. 软件环境 2.1 Tampermonkey 三.主要流程 3.1 创建javascript脚本 点击添加新脚本 …

2023第二届全国大学生数据分析大赛A题思路

某电商平台用户行为分析与挖掘 背景&#xff1a;电商是当今用户最大的交易市场之一&#xff0c;电商行业也逐渐成熟&#xff0c; 所有市场中可售卖的商品全都在平台中存在&#xff0c;并且在网络和疫情的影 响下&#xff0c;在线上的消费行为满足全年龄段用户。 用户的交易行为…

2023.11.4 Idea 配置国内 Maven 源

目录 配置国内 Maven 源 重新下载 jar 包 配置国内 Maven 源 <mirror><id>alimaven</id><name>aliyun maven</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url><mirrorOf>central</mirrorOf> …

为你整理了一份抖音小店的高分打造指南

抖音小店是一种在抖音平台上运营的电商店铺。通过打造一个高分店铺&#xff0c;可以吸引更多用户关注和购买&#xff0c;提升销售业绩。下面四川不若与众将介绍一些打造高分店铺的方法。 首先&#xff0c;店铺名称和简介要吸引眼球。店铺名称应该简洁明了&#xff0c;容易被记住…