OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复

  • 前言
  • 一、基础
  • 二、代码
  • 三、更多资源

前言

本节我们将要学习:

使用修补技术去除老照片中小的噪音和划痕

使用 OpenCV 中与修补技术相关的函数

一、基础

在我们每个人的家中可能都会几张退化的老照片,有时候上面不小心在上面弄上了点污渍或者是画了几笔。你有没有想过要修复这些照片呢?我们可以使用笔刷工具轻易在上面涂抹两下,但这没用,你只是用白色笔画取代了黑色笔画。此时我们就要求助于图像修补技术了。这种技术的基本想法很简单:使用坏点周围的像素取代坏点,这样它看起来和周围像素就比较像了。如下图所示(照片来自维基百科)

在这里插入图片描述
为了实现这个目的,科学家们已经提出了好几种算法,OpenCV 提供了其中的两种。这两种算法都可以通过使用函数 cv2.inpaint() 来实施。

第一个算法是根据 Alexandru_Telea 在 2004 发表的文章实现的。它是基于快速行进算法的。以图像中一个要修补的区域为例。算法从这个区域的边界开始向区域内部慢慢前进,首先填充区域边界像素。它要选取待修补像素周围的一个小的邻域,使用这个邻域内的归一化加权和更新待修复的像素值。权重的选择是非常重要的。对于靠近带修复点的像素点,靠近正常边界像素点和在轮廓上的像素点给予更高的权重。当一个像素被修复之后,使用快速行进算法(FMM)移动到下一个最近的像素。FMM 保证了靠近已知(没有退化的)像素点的坏点先被修复,这与手工启发式操作比较类似。可以通过设置标签参数为 cv2.INPAINT_TELEA 来使用此算法。

第二个算法是根据 Bertalmio,Marcelo,Andrea_L.Bertozzi, 和 Guillermo_Sapiro在 2001 年发表的文章实现的。这个算法是基于流体动力学并使用了偏微分方程。基本原理是启发式的。它首先沿着正常区域的边界向退化区域的前进(因为边界是连续的,所以退化区域非边界与正常区域的边界应该也是连续的)。它通过匹配待修复区域中的梯度向量来延伸等光强线(isophotes,由灰度值相等的点练成的线)。为了实现这个目的,作者是用来流体动力学中的一些方法。完成这一步之后,通过填充颜色来使这个区域内的灰度值变化最小。可以通过设置标签参数为 cv2.INPAINT_NS 来使用此算法。

二、代码

我们要创建一个与输入图像大小相等的掩模图像,将待修复区域的像素设置为 255(其他地方为 0)。所有的操作都很简单。我要修复的图像中有几个黑色笔画。我是使用画笔工具添加的。

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('messi_2.png')
mask = cv2.imread('mask2.png',0)
dst = cv2.inpaint(img,mask,3, cv2.INPAINT_NS)
dst2 = cv2.inpaint(img,mask,3, cv2.INPAINT_TELEA)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB)
plt.figure()
plt.subplot(221),plt.imshow(img),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(222),plt.imshow(mask, cmap='gray'),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(223),plt.imshow(dst),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(224),plt.imshow(dst2),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.show()

结果如下。第一幅图是退化的输入图像,第二幅是掩模图像。第三幅是使用第一个算法的结果,最后一副是使用第二个算法的结果。
在这里插入图片描述

三、更多资源

  1. Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro.“Navier-stokes, fluid dynamics, and image and video inpainting.”In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I-355. IEEE, 2001.
  2. Telea, Alexandru. “An image inpainting technique based on the fast marching method.”Journal of graphics tools 9.1 (2004): 23-34.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/115236.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

领星ERP如何无需API开发轻松连接OA、电商、营销、CRM、用户运营、推广、客服等近千款系统

领星ERP(LINGXING)是一款专业的一站式亚马逊管理系统,帮助卖家构建完整的数据化运营闭环。,致力于为跨境电商卖家提供精细化运营和业财一体化的解决方案。 官网:https://erp.lingxing.com 集简云无代码集成平台&…

Spring Boot 使用断言抛出自定义异常,优化异常处理机制

文章目录 什么是断言?什么是异常?基于断言实现的异常处理机制创建自定义异常类创建全局异常处理器创建自定义断言类创建响应码类创建工具类测试效果 什么是断言? 实际上,断言(Assertion)是在Java 1.4 版本…

UE5数字孪生制作(一) - QGIS 学习笔记

1.下载 QGIS是免费的GIS工具,下载地址: https://www.qgis.org/en/site/ 2.安装 - 转中文 按照步骤安装,完成后,在菜单 设置settings里,选择options,修改语言 确定后,需要重启下软件 3.学习视…

Pycharm 对容器中的 Python 程序断点远程调试

pycharm如何连接远程服务器的docker容器有两种方法: 第一种:pycharm通过ssh连接已在运行中的docker容器 第二种:pycharm连接docker镜像,pycharm运行代码再自动创建容器 本文是第一种方法的教程,第二种请点击以上的链接…

Spring 与 Spring Boot

什么是 Spring 可以理解 Spring 是一个框架。这个框架最早来源于在差不多的 20 年前的 2002 年。 在那个时候 Java 世界的开发还是以 EJB 为主,因为在这之前的大部分应用都会使用服务器客户端的应用模式。 其实这个模式在现在还是在使用的,例如 IBM 系统…

2023-11-04 LeetCode每日一题(数组中两个数的最大异或值)

2023-11-04每日一题 一、题目编号 421. 数组中两个数的最大异或值二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数数组 nums &#xff0c;返回 nums[i] XOR nums[j] 的最大运算结果&#xff0c;其中 0 ≤ i ≤ j < n 。 示例 1&#xff1a; 示例 2&…

gorm的自动化工具gen

gorm的自动化工具gen 官方 https://gorm.io/zh_CN/gen/假设数据库结构如 这里使用gen-tool 安装 go install gorm.io/gen/tools/gentoollatest用法 gentool -hUsage of gentool:-c string配置文件名、默认值 “”、命令行选项的优先级高于配置文件。 -db string指定Driver…

【Linux】僵尸进程、孤儿进程的理解与验证

僵尸进程 概念 僵尸进程&#xff08;Zombie Process&#xff09;是指一个已经终止执行的子进程&#xff0c;但其父进程尚未调用 wait() 或 waitpid() 函数来获取子进程的退出状态。 Linux 中&#xff0c;僵尸进程会保留一些资源&#xff0c;如进程 ID、进程表项和一些系统资源…

设数据为01101001,试采用4个校验位求其偶校验方式的海明码。

遇到一个题目&#xff0c;但是教材书上写的比较迷糊&#xff0c;看不懂&#xff0c;后来在网上搜了一下方法&#xff0c;发现还是比较简单的&#xff0c;现在分享一下我的解法 首先&#xff0c;套用公式&#xff1a;2k - 1 > n k 因为求得数字是8位数&#xff0c;n8&#x…

vue+vant图片压缩后上传

vuevant图片压缩后上传 vue文件写入 <template><div class"home"><van-field input-align"left"><template #input><van-uploaderv-model"fileList.file":after-read"afterRead":max-count"5":…

【计算机网络笔记】传输层——TCP的可靠数据传输

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

【npm run dev 报错:error:0308010C:digital envelope routines::unsupported】

问题原因&#xff1a; nodejs版本太高&#xff08;nodejs v17版本发布了openSSL3.0对短发和密钥大小增加了更为严格的限制&#xff0c;nodejs v17之前版本没有影响&#xff0c;但之后的版本会出现这个错误&#xff0c;物品的node版本是20.9.0&#xff09; 解决方式&#xff1…

搜维尔科技:网球运动员使用Xsens寻求精确的动作捕捉

就像其他一些运动一样,近年来网球迷们没有机会去参加许多真正优秀的模拟游戏,所以当一个人出现并承诺有这种体验时,很难不激动。开发者圆环游戏 匹配点:网球锦标赛 现在,我们承诺在单一支付者和多人组成部分的球场上有一个坚实的经验,我们对游戏和游戏的内部和外部都很好奇,我…

XSpirit 2智能边缘计算机使用测评

博客主页&#xff1a;https://tomcat.blog.csdn.net 博主昵称&#xff1a;农民工老王 主要领域&#xff1a;Java、Linux、K8S 期待大家的关注&#x1f496;点赞&#x1f44d;收藏⭐留言&#x1f4ac; 目录 拆箱过程介绍视频使用感受 我之前就参加过 Spirit 1 第一代智能边缘计…

Nginx搭载负载均衡及前端项目部署

目录 ​编辑 一.Nginx安装 1.安装所需依赖 2.下载并解压Nginx安装包 3.安装nginx 4.启动Nginx服务 二.Tomcat负载均衡 1.准备环境 1.1 准备两个Tomcat 1.2 修改端口号 1.3 配置Nginx服务器集群 2.效果展示 ​编辑三.前端项目打包 ​编辑四.前端项目部署 1.上传项目…

Maven修改仓库和镜像地址

目录 1、修改仓库地址2、修改镜像地址 1、修改仓库地址 使用IDEA时,如果不指定自己下载的Maven,idea会默认使用自带的Maven 3&#xff08;bundle)。maven 3默认的仓库路径一般是在c盘的用户文件夹中的.m2目录下&#xff1a; 当maven下的pom文件中的依赖逐渐增加时,maven仓库下…

进程控制(二):进程等待

文章目录 进程控制&#xff08;二&#xff09;进程等待wait函数waitpid函数wait/waitpid获取子进程状态码的过程进程等待相关的宏 总结 进程控制&#xff08;二&#xff09; 延续对于上文进程结束&#xff0c;我们继续对于进程控制进行学习&#xff0c;本文我们主要是对于进程…

详解IPD需求分析工具$APPEALS

够让企业生存下去的是客户&#xff0c;所以&#xff0c;众多企业提出要“以客户为中心”&#xff0c;那如何做到以客户为中心&#xff1f;IPD中给出的答案是需求管理。 需求管理流程&#xff0c;是IPD&#xff08;集成管理开发&#xff09;体系中的四大支撑流程之一&#xff0…

【STM32】基于HAL库建立自己的低功耗模式配置库(STM32L4系列低功耗所有配置汇总)

【STM32】基于HAL库建立自己的低功耗模式配置库&#xff08;STM32L4系列低功耗所有配置汇总&#xff09; 文章目录 低功耗模式&#xff08;此章节可直接跳过&#xff09;低功耗模式简介睡眠模式停止模式待机模式 建立自己的低功耗模式配置库通过结构体的方式来进行传参RTC配置…

python如何使用gspread读取google在线excel数据?

一、背景 公司使用google在线excel管理测试用例&#xff0c;为了方便把手工测试用到的测试数据用来做自动化用例测试数据&#xff0c;所以就想使用python读取在线excel数据&#xff0c;通过数据驱动方式&#xff0c;完成自动化回归测试&#xff0c;提升手动复制&#xff0c;粘…