我在Vscode学OpenCV 处理图像

既然我们是面向Python的OpenCV(OpenCV for Python)那我们就必须要熟悉Numpy这个库,尤其是其中的数组的库,Python是没有数组的,唯有借助他库才有所实现想要的目的。

# 老三样库--事先导入
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

OpenCV处理图像

  • 二、图像的认识
    • 2.1图像的表示
      • 2.1.1 单通道__二值图像
      • 2.1.2 单通道__灰度图像
        • 随机抓取一点看:
      • 2.1.3 多通道__RGB彩色图像
        • 以#FFF为例子
        • 区别于OpenCV的通道
    • 2.2 逐点处理(逐像素)并操作
      • 2.2.1 灰度图像
        • (1)如何证明plt和cv2的的灰度图是一样的
        • (2)避免错误:`TypeError: unsupported operand type(s) for -: 'AxesImage' and 'int'`
          • 轴图像转换为数组形式plt.imread或plt.imsave
        • (3)plt就显示是正常的颜色。参数 cmap
          • `cmap` 是 Matplotlib 中的参数,用于指定颜色映射(Colormap),它决定了如何将数据值映射到颜色。Colormap 是一种颜色表,可以将数值数据映射到对应的颜色。它在绘制单通道图像或图表时非常有用,以帮助可视化数据。
        • (4)避免少cmap的参数出现的问题
        • (5)修改像素点
      • 2.2.2 彩色图像
        • 修改像素点
      • ==2.2.3 感兴趣区域(ROI)【待处理】==
    • 2.3 图像的属性
    • 2.4 通道的操作
      • 2.4.1 cv2.split()能够拆分图像的通道
        • 拆分后就是单通道,需要灰度图
      • 2.4.2 cv2.merge()可以实现图像通道的合并
    • 2.5 色彩转变
      • 2.5.1 色彩空间转换
      • 要以灰度图显示
        • 转换为HSV

二、图像的认识

2.1图像的表示

2.1.1 单通道__二值图像

二值图像是指仅仅包含黑色和白色两种颜色的图像。

白色像素点(白色小方块区域)处理为“1”,将黑色像素点(黑色小方块区域)处理为“0”,以方便进行后续的存储和处理等操作

例如:二维码和条形码就是简单的二值
在这里插入图片描述

2.1.2 单通道__灰度图像

二值图像表示起来简单方便,但是因为其仅有黑白两种颜色,所表示的图像不够细腻。如果想要表现更多的细节,就需要使用更多的颜色。能够表示的信息更多了

 256 个灰度级,用数值区间[0, 255]来表示,中,
 数值“255”表示纯白色,数值“0”表示纯黑色.
# 处理图像
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img =np.zeros((256,256,3),np.uint8)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

随机抓取一点看:
x=np.random.randint(0,256)
y=np.random.randint(0,256)
img[x,y],x,y

> [0 0 0] 103 220
再次随机

在这里插入图片描述

2.1.3 多通道__RGB彩色图像

自然界:红色、绿色和蓝色,即三基色(按照一定的比例混合构成。)
要区别于美术中的三原色:红黄蓝

色彩空间:
从光学角度出发可以将颜色解析为主波长,纯度,明度等,
从心理学角度和视觉角度出发可以将颜色解析为色调,饱和度,亮度等,我们将这些采用不同方式表达颜色的模式称为色彩空间。

RGB三个通道,每个通道取值[0,255]之间,组合表示颜色。共可以调配出所有常见的 256×256×256=16,777,216种颜色。

RGB=(R*65536)+(G*256)+B
在这里插入图片描述

以#FFF为例子

#FFF是#FFFFFF的简称
在这里插入图片描述
其他颜色
在这里插入图片描述

区别于OpenCV的通道

在RGB的色彩空间之中是以R,G,B的顺序存储的,然而在OpenCV中的通道是B,G,R
即:在处理图像的时候,需要对指定的图像通道顺序进行转换。除此以外,还可以根据需要对不同色彩空间的图像进行类型转换(灰度图像处理为二值图像,将彩色图像处理灰度图)

比方说,扫描二维码的时候,我们需要01的黑白画面就可以,不需要[0,255]的复杂

2.2 逐点处理(逐像素)并操作

像素的一格一格的小点来描述图像,现在有numpy和matplotlib.pyplot就相当于在二位的直角坐标系中的第二象限,就能够通过索引的形式对我们设定的图像或者导入的图像进行操作,访问。
在这里插入图片描述

在这里插入图片描述

img[1,1]=(0,0,255)
plt.imshow(img[:,:,::-1])

在这里插入图片描述

2.2.1 灰度图像

在这里插入图片描述

首先使用 Numpy 库来生成一个 n×m 大小的数组,用来模拟一个黑色图像.

使用 Numpy 库中的函数 zeros()可以生成一个元素值都是 0 的数组
img=np.zeros((n,m),dtype=np.uint8

二维数组与图像之间存在对应关系。
在这里插入图片描述

(1)如何证明plt和cv2的的灰度图是一样的

在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
img = cv2.imread("./Pic/f2e919585490afd1bebd313257e7ad9.jpg", 0)

# # 使用cv2.imwrite将OpenCV数组图像保存为图像文件
# cv2.imwrite('./Pic/f2e919585490afd1bebd313257e7ad9.jpg', img)

# 如果你想要读取并显示保存后的图像,可以执行以下代码
saved_img = cv2.imread('./Pic/f2e919585490afd1bebd313257e7ad9.jpg', 0)
plt.imshow(saved_img, cmap='gray')
plt.title('Saved Image')
print(img==saved_img)

(2)避免错误:TypeError: unsupported operand type(s) for -: 'AxesImage' and 'int'

即:不可直接比较,需要将周图像的信息转换为数组的形式,一一对比。[轴图像无法和numpy数组]
在这里插入图片描述

轴图像转换为数组形式plt.imread或plt.imsave
import matplotlib.pyplot as plt

# 读取Matplotlib图像并将其转换为数组
image_plt = plt.imread('your_image_path.jpg')

# 现在,image_plt是一个包含图像像素数据的NumPy数组
# 你可以对它进行处理或进行其他操作

或者,如果你要保存Matplotlib图像到文件中,你可以使用plt.imsave函数:

import matplotlib.pyplot as plt

# 创建一个示例图像(这是一个例子,你可以替换它为你自己的图像数据)
image_data = ...  # 这里应该是一个NumPy数组

# 使用plt.imsave保存NumPy数组为图像文件
plt.imsave('output_image.jpg', image_data)

通过这两种方法,你可以在Matplotlib图像和NumPy数组之间进行相互转换。注意,如果你使用了一些Matplotlib特定的绘图函数来创建图像,你可以使用plt.gcf()获取当前的图形对象,然后使用savefig方法将其保存为图像文件。

(3)plt就显示是正常的颜色。参数 cmap

在使用 Matplotlib 绘制图像时,可以使用不同的 colormap(颜色映射)来表示单通道图像,例如使用 cmap=‘gray’ 来显示灰度图像。对于四通道的图像,Matplotlib 也可以正确地显示透明度(Alpha)通道。

这是由于plt的映射到在灰度图像中,你只有一个通道,表示亮度值,但你可以使用不同的 Colormap 来表示这些亮度值。

cool 包含青绿色和品红色的阴影色。从青绿色平滑变化到品红色。
gray 返回线性灰度色图。
bone 具有较高的蓝色成分的灰度色图。该色图用于对灰度图添加电子的视图。

opencv是BGR通道,plt默认RGB通道,若使用cv2.imread()读入图像,用plt.imshow()展示原始图像或者展示对读入图像进行一系列操作后的图像时,需要进行通道转换。

显示灰度图像:

import matplotlib.pyplot as plt
import cv2

# 读取灰度图像
gray_image = cv2.imread('gray_image.png', cv2.IMREAD_GRAYSCALE)

# 显示灰度图像
plt.imshow(gray_image, cmap='gray')
plt.show()

显示四通道图像(RGBA):

import matplotlib.pyplot as plt
import cv2

# 读取四通道图像
rgba_image = cv2.imread('rgba_image.png', cv2.IMREAD_UNCHANGED)

# 显示四通道图像,包括透明度通道
plt.imshow(rgba_image)
plt.show()

cmap 是 Matplotlib 中的参数,用于指定颜色映射(Colormap),它决定了如何将数据值映射到颜色。Colormap 是一种颜色表,可以将数值数据映射到对应的颜色。它在绘制单通道图像或图表时非常有用,以帮助可视化数据。

Colormap 并不是通道的意思,而是指定如何将单一通道的数值映射到颜色的规则。在灰度图像中,你只有一个通道,表示亮度值,但你可以使用不同的 Colormap 来表示这些亮度值。

Matplotlib 提供了多种内置的 Colormap,一些常见的包括:

  1. 'viridis':从紫色到黄绿色的颜色映射,用于表示数据值的连续变化。
  2. 'jet':经典的彩虹颜色映射。
  3. 'gray':灰度颜色映射,用于表示单通道图像,将较暗的值映射为黑色,较亮的值映射为白色。
  4. 'copper':铜色颜色映射,常用于表示表面温度。

你可以在 Matplotlib 中使用 cmap 参数来指定所使用的颜色映射。例如:

import matplotlib.pyplot as plt
import numpy as np

# 创建一个示例的单通道数据
data = np.random.random((10, 10))

# 使用'viridis' Colormap来绘制数据
plt.imshow(data, cmap='viridis')
plt.colorbar()  # 显示颜色条
plt.show()

这将使用 ‘viridis’ Colormap 来表示数据中不同值的颜色。你可以根据你的需求选择合适的 Colormap 来更好地可视化你的数据。不同的 Colormap 可以传达不同的信息和情感。

(4)避免少cmap的参数出现的问题
import cv2
import numpy as np
import matplotlib.pyplot as plt
img=np.ones((200,800,3),dtype=np.uint8)
img[:] = 255

cv2.imshow("this",img)
plt.imshow(img, cmap='gray')
cv2.waitKey(0)

cv2.destroyAllWindows()
img

在这里插入图片描述

(5)修改像素点

函数 item()能够更加高效地访问图像的像素点,该函数的语法格式为:
item(行,列)
函数 itemset()可以用来修改像素值,其语法格式为:
itemset(索引值,新值

import numpy as np
img=np.random.randint(10,99,size=[5,5],dtype=np.uint8)
print("img=\n",img)
print("读取像素点 img.item(3,2)=",img.item(3,2))
img.itemset((3,2),255)
print("修改后 img=\n",img)
print("修改后像素点 img.item(3,2)=",img.item(3,2))

随机生成一张灰度图

img=np.random.randint(0,256,size=[256,256],dtype=np.uint8)
cv2.imshow("demo",img)
 cv2.waitKey() 
 cv2.destroyAllWindows()

在这里插入图片描述**加粗样式
**

2.2.2 彩色图像

RGB 模式的彩色图像在读入 OpenCV 内进行处理时,会反向的读取图像像素BGR,并存储在ndarray中。其中的BGR为三维数组

在这里插入图片描述

import numpy as np
import cv2
#-----------蓝色通道值--------------
blue=np.zeros((300,300,3),dtype=np.uint8)
blue[:,:,0]=255
print("blue=\n",blue)
cv2.imshow("blue",blue)
#-----------绿色通道值--------------
green=np.zeros((300,300,3),dtype=np.uint8)
green[:,:,1]=255
print("green=\n",green)
cv2.imshow("green",green)
#-----------红色通道值--------------
red=np.zeros((300,300,3),dtype=np.uint8)
red[:,:,2]=255
print("red=\n",red)
cv2.imshow("red",red)
#-----------释放窗口--------------
cv2.waitKey()
cv2.destroyAllWindows()

修改像素点

函数 item()访问 RGB 模式图像的像素值时,其语法格式为:
item(行,列,通道)
函数 itemset()修改(设置)RGB 模式图像的像素值时,其语法格式为:
itemset(三元组索引值,新值)
需要注意,针对 RGB 图像的访问,必须同时指定行、列以及行列索引(通道),例如
img.item(a,b,c)。仅仅指定行和列是不可以的

import numpy as np
img=np.random.randint(10,99,size=[2,4,3],dtype=np.uint8)
print("img=\n",img)
print("读取像素点 img[1,2,0]=",img.item(1,2,0))
print("读取像素点 img[0,2,1]=",img.item(0,2,1))
print("读取像素点 img[1,0,2]=",img.item(1,0,2))
img.itemset((1,2,0),255)
img.itemset((0,2,1),255)
img.itemset((1,0,2),255)
print("修改后 img=\n",img)2 章 图像处理基础
27
print("修改后像素点 img[1,2,0]=",img.item(1,2,0))
print("修改后像素点 img[0,2,1]=",img.item(0,2,1))
print("修改后像素点 img[1,0,2]=",img.item(1,0,2))

生成一幅彩色图像,让其中的像素值均为随机数。 根据题目要求,编写代码如下: import cv2

import numpy as np
> img=np.random.randint(0,256,size=[256,256,3],dtype=np.uint8)
> cv2.imshow("demo",img)
> cv2.waitKey()
> cv2.destroyAllWindows()

2.2.3 感兴趣区域(ROI)【待处理】

ROI(region of interest),感兴趣区域。机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理。

2.3 图像的属性

图像的属性

属性— API
形状 img.shape
图像大小 img.size
数据类型 img.dtype

 shape:如果是彩色图像,则返回包含行数、列数、通道数的数组;如果是二值图像或者灰度图像,则仅返回行数和列数。通过该属性的返回值是否包含通道数,可以判断一幅图像是灰度图像(或二值图像)还是彩色图像。

 size:返回图像的像素数目。其值为“行×列×通道数”,灰度图像或者二值图像的通道数为 1。

 dtype:返回图像的数据类型

2.4 通道的操作

针对 OpenCV 内的 BGR
图像 img,如下语句分别从中提取了 B 通道、G 通道、R 通道。

b = img[ : , : , 0 ]
g = img[ : , : , 1 ]
r = img[ : , : , 2 ]

2.4.1 cv2.split()能够拆分图像的通道

b,g,r=cv2.split(img)
#通道拆分
b,g,r=cv.split(newimg)
拆分后就是单通道,需要灰度图

plt.imshow(b,cmap=plt.cm.gray)
在这里插入图片描述
在这里插入图片描述

2.4.2 cv2.merge()可以实现图像通道的合并

newimg=cv2.merge([b,g,r])

1

2.5 色彩转变

2.5.1 色彩空间转换

gray=cv.cvtColor(newimg,cv.COLOR_BGR2GRAY)
# plt.imshow(gray)

要以灰度图显示

plt.imshow(gray,cmap=plt.cm.gray)

在这里插入图片描述

转换为HSV
hsv=cv.cvtColor(newimg,cv.COLOR_BGR2HSV)
plt.imshow(hsv)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/114913.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python操作CMD大揭秘!轻松玩转命令行控制

导语: 命令行界面(Command Line Interface,简称CLI)是计算机操作系统中一种基于文本的用户界面,通过输入命令来与计算机进行交互。Python作为一门强大的编程语言,提供了丰富的库和模块,可以方便…

Android系统Launcher启动流程学习(一)init启动部分

init进程学习: 文件路径system/core/init/init.cpp 解析init.rc配置文件,首先开启ServiceManager和MediaServer等关键进程init进程fork启动Zygote服务进程处理子进程的终止(signal方式)提供属性服务的功能 int main(int argc, char** argv) {//注释一…

机器学习快速入门教程 Scikit-Learn实现

机器学习是什么? 机器学习是一帮计算机科学家想让计算机像人一样思考所研发出来的计算机理论。他们曾经说过,人和计算机其实本没有差别,同样都是一大批互相连接的信息传递和存储元素所组成的系统。所以有了这样的想法,加上他们得天独厚的数学功底,机器学习的前身也就孕育而生…

图像视觉特效处理工具:Boris FX Optics 2024.0.1

BorisFX光效插件Optics首发2024版:3大新功能详解 2023年9月15日,全球领先的视觉后期软件开发公司BorisFX推出了旗下知名软件Boris FX Optics的全新2024版本,这款备受后期处理爱好者喜爱的Photoshop插件和独立程序再次升级,为您的…

致远OA wpsAssistServlet任意文件读取漏洞复现 [附POC]

文章目录 致远OA wpsAssistServlet任意文件读取漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 致远OA wpsAssistServlet任意文件读取漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用…

硬件测试(二):波形质量

一、信号质量测试 信号在传输的过程中,一般不是标准的矩形波信号,信号质量测试即通过示波器测试单板硬件的数字信号和模拟信号的各项指标,包括电源、时钟、复位、CPU小系统、外部接口(USB、网口、串口)、逻辑芯片(CPLD…

香港金融科技周2023:AIGC重塑金融形态

10月31日,由香港财经事务及库务局与投资推广署主办的“香港金融科技周2023大湾区专场”盛大启幕。中国AI决策领先企业萨摩耶云科技集团创始人、董事长兼 CEO林建明受邀参加圆桌会议,与中国内地、香港以及全球金融科技行业顶尖人才、创新企业、监管机构和…

在前端实现小铃铛上展示消息

点击铃铛显示如下消息框&#xff1a; 如果点击消息&#xff0c;可以实现消息从列表中移除,并从铃铛总数上进行扣减对应的已读消息数。 关于以上功能的实现方式&#xff1a; <!-- 铃铛位置 --><i class"el-icon-bell" click"showPopover true"&…

阿里云OS系统Alibaba Cloud Linux 3系统的安全更新命令

给客户部署的服务&#xff0c;进入运维阶段&#xff0c;但是经常被客户监测到服务器漏洞&#xff0c;现在整理一下&#xff0c;服务器漏洞问题更新命令步骤。 服务器系统&#xff1a; 阿里云linux服务器&#xff1a;Alibaba Cloud Linux 3 漏洞类型和描述&#xff1a; #3214…

K8s Error: ImagePullBackOff 故障排除

Error: ImagePullBackOff 故障排除 1. 起因 起因是要在一组k8s环境下做个Prometheus的测试,当时虚拟机用完直接暂停了. 启动完master和node节点后重启了这些节点. 当检查dashboard时候发现Pod处于ImagePullBackOff状态,使用命令查看详细情况 kubectl describe pods -n kuber…

hadoop配置文件自检查(解决常见报错问题,超级详细!)

本篇文章主要的内容就是检查配置文件&#xff0c;还有一些常见的报错问题解决方法&#xff0c;希望能够帮助到大家。 一、以下是大家可能会遇到的常见问题&#xff1a; 1.是否遗漏了前置准备的相关操作配置&#xff1f; 2.是否遗的将文件夹(Hadoop安装文件夹&#xff0c;/dat…

力控关节性能指标

力控关节是一种用于机器人的关节&#xff0c;具有强大的力控制能力&#xff0c;通常用于执行需要精确力量控制的任务&#xff0c;例如装配、协作操作、力导引操作等。 电机的伺服驱动器通常包括三种控制环——位置环、速度环和电流环。虽然每种控制环的目的是控制电机性能的不同…

无声的世界,精神科用药并结合临床的一些分析及笔记(十)

目录 回 “ 家 ” 克服恐惧 奥沙西泮 除夕 酒与药 警告 离别 回 “ 家 ” 她的锥切手术进行的很顺利&#xff0c;按计划继续返回安定医院调节心理状态&#xff0c;病友们都盼着我们回“家”。当我俩跨入病区&#xff0c;大家都涌过来帮我们大包小包的拎着行李&#xff0…

景联文科技:高质量数据采集清洗标注服务,助力大语言模型红蓝对抗更加精准高效

红蓝对抗是一种测试和评估大语言模型的方法。通过模拟真实世界测试AI模型的潜在漏洞、偏见和弱点&#xff0c;确保大型语言模型的可靠性和性能。 在红蓝对抗过程中&#xff0c;由主题专家组成的专业团队负责模拟攻击和提供反馈&#xff0c;他们试图诱导AI模型产生不当行为&…

【Linux】基本指令-入门级文件操作(三)

目录 基本指令 14 head指令 15 tail指令 管道 16 find指令 17 grep指令 18 zip&#xff06;unzip指令 19 tar指令 20 su指令 总结 基本指令 14 head指令 功能&#xff1a;在屏幕上显示文件的内容&#xff0c;默认显示前10行&#xff0c;如果加上选项-n&#xff0c;则…

如何利用Jmeter从0到1做一次完整的压测?这2个步骤很关键!

压测&#xff0c;在很多项目中都有应用&#xff0c;是测试小伙伴必备的一项基本技能&#xff0c;刚好最近接手了一个小游戏的压测任务&#xff0c;一轮压测下来&#xff0c;颇有收获&#xff0c;赶紧记录下来&#xff0c;与大家分享一下&#xff0c;希望大家能少踩坑。 一、压…

uniapp 微信小程ios端键盘弹起后导致页面无法滚动

项目业务逻辑和出现的问题整理 新增页面 用户可以主动添加输入文本框 添加多了就会导致当前页面出现滚动条,这就导致ios端滚动页面的时候去点击输入框键盘抬起再关闭的时候去滚动页面发现页面滚动不了(偶尔出现),经过多次测试发现是键盘抬起的时候 主动向上滑动 100%出现这种问…

备份doris数据到minio

1、MINIO 设置 创建服务账户&#xff0c;记住ACCESS_KEY和SECRET_KEY 创建Buckets doris 设置region 在首页查看服务ip和端口号 2、创建S3备份库 因为minio是兼容S3协议的&#xff0c;所以可以通过s3协议链接minio。 CREATE REPOSITORY minio WITH S3 ON LOCATION "s3://…

CSC公派研究生项目|北语北外2024年寒假英语培训班正在招生

北京语言大学出国部、北京外国语大学出国部近期发布了2024年寒假“国家建设高水平大学公派研究生项目”英语培训的通知&#xff0c;知识人网小编特归纳整理&#xff0c;供有需求的同学参考。 北京语言大学 我部将于2024年寒假举办“国家建设高水平大学公派研究生项目”英语培训…

基于RK3568的新能源储能能量管理系统ems

新能源储能能量管理系统&#xff08;EMS&#xff09;是一种基于现代化技术的系统&#xff0c;旨在管理并优化新能源储能设备的能量使用。 该系统通过监测、调度和控制新能源储能设备来确保能源的高效利用和可持续发展。 本文将从不同的角度介绍新能源储能能量管理系统的原理、…