Langchain-Chatchat项目:4.1-P-Tuning v2实现过程

  常见参数高效微调方法(Parameter-Efficient Fine-Tuning,PEFT)有哪些呢?主要是Prompt系列和LoRA系列。本文主要介绍P-Tuning v2微调方法。如下所示:

  • Prompt系列比如,Prefix Tuning(2021.01-Stanford)、Prompt Tuning(2021.09-Google)、P-Tuning(2021.03-Tsinghua)、P-Tuning v2(2022.03-Tsinghua);
  • LoRA系列比如,LoRA(2021.11-Microsoft)、AdaLoRA(2023.03-Microsoft)、QLoRA(2023.05-Washington)。
  • 还有不知道如何分类的比如,BitFit、Adapter Tuning及其变体、MAM Adapter、UniPELT等。


一.P-Tuning v2工作原理
1.Hard/Soft Prompt-Tuning如何设计
  提示工程发展经过了从人工或半自动离散空间的hard prompt设计,到采用连续可微空间soft prompt设计的过程,这样的好处是可通过端到端优化学习不同任务对应的prompt参数。
2.P-Tuning工作原理和不足
  主要是将continuous prompt应用于预训练模型的输入层,预训练模型后面的每一层都没有合并continuous prompt。

3.P-Tuning v2如何解决P-Tuning不足
  P-Tuning v2把continuous prompt应用于预训练模型的每一层,而不仅仅是输入层。


二.P-Tuning v2实现过程
1.整体项目结构
  源码参考文献[4],源码结构如下所示:

参数解释如下所示:
(1)–model_name_or_path L:/20230713_HuggingFaceModel/20231004_BERT/bert-base-chinese:BERT模型路径
(2)–task_name qa:任务名字
(3)–dataset_name squad:数据集名字
(4)–do_train:训练过程
(5)–do_eval:验证过程
(6)–max_seq_length 128:最大序列长度
(7)–per_device_train_batch_size 2:每个设备训练批次大小
(8)–learning_rate 5e-3:学习率
(9)–num_train_epochs 10:训练epoch数量
(10)–pre_seq_len 128:前缀序列长度
(11)–output_dir checkpoints/SQuAD-bert:检查点输出目录
(12)–overwrite_output_dir:覆盖输出目录
(13)–hidden_dropout_prob 0.1:隐藏dropout概率
(14)–seed 11:种子
(15)–save_strategy no:保存策略
(16)–evaluation_strategy epoch:评估策略
(17)–prefix:P-Tuning v2方法
执行代码如下所示:

python3 run.py --model_name_or_path L:/20230713_HuggingFaceModel/20231004_BERT/bert-base-chinese --task_name qa --dataset_name squad --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 2 --learning_rate 5e-3 --num_train_epochs 10 --pre_seq_len 128 --output_dir checkpoints/SQuAD-bert --overwrite_output_dir --hidden_dropout_prob 0.1 --seed 11 --save_strategy no --evaluation_strategy epoch --prefix

2.代码执行流程
(1)P-tuning-v2/run.py

  • 根据task_name=="qa"选择tasks.qa.get_trainer
  • 根据get_trainer得到trainer,然后训练、评估和预测

(2)P-tuning-v2/tasks/qa/get_trainer.py

  • 得到config、tokenizer、model、squad数据集、QuestionAnsweringTrainer对象trainer
  • 重点关注model是如何得到的
# fix_bert表示不更新bert参数,model数据类型为BertPrefixForQuestionAnswering
model = get_model(model_args, TaskType.QUESTION_ANSWERING, config, fix_bert=True)
  • 重点关注QuestionAnsweringTrainer具体实现
trainer = QuestionAnsweringTrainer(  # 读取trainer
    model=model,  # 模型
    args=training_args,  # 训练参数
    train_dataset=dataset.train_dataset if training_args.do_train else None,  # 训练集
    eval_dataset=dataset.eval_dataset if training_args.do_eval else None,  # 验证集
    eval_examples=dataset.eval_examples if training_args.do_eval else None,  # 验证集
    tokenizer=tokenizer,  # tokenizer
    data_collator=dataset.data_collator,  # 用于将数据转换为batch
    post_process_function=dataset.post_processing_function,  # 用于将预测结果转换为最终结果
    compute_metrics=dataset.compute_metrics,  # 用于计算评价指标
)

(3)P-tuning-v2/model/utils.py
选择P-tuning-v2微调方法,返回BertPrefixForQuestionAnswering模型,如下所示:

def get_model(model_args, task_type: TaskType, config: AutoConfig, fix_bert: bool = False):
    if model_args.prefix:  # 训练方式1:P-Tuning V2(prefix=True)
        config.hidden_dropout_prob = model_args.hidden_dropout_prob  # 0.1
        config.pre_seq_len = model_args.pre_seq_len  # 128
        config.prefix_projection = model_args.prefix_projection  # False
        config.prefix_hidden_size = model_args.prefix_hidden_size  # 512
        # task_type是TaskType.QUESTION_ANSWERING,config.model_type是bert,model_class是BertPrefixForQuestionAnswering
        model_class = PREFIX_MODELS[config.model_type][task_type]
        # model_args.model_name_or_path是bert-base-chinese,config是BertConfig,revision是main
        model = model_class.from_pretrained(model_args.model_name_or_path, config=config, revision=model_args.model_revision,)

(4)P-tuning-v2/model/question_answering.py(重点)
主要是BertPrefixForQuestionAnswering(BertPreTrainedModel)模型结构,包括构造函数、前向传播和获取前缀信息。
(5)P-tuning-v2/model/prefix_encoder.py(重点)
BertPrefixForQuestionAnswering(BertPreTrainedModel)构造函数中涉及到前缀编码器PrefixEncoder(config)
(6)P-tuning-v2/training/trainer_qa.py
继承关系为QuestionAnsweringTrainer(ExponentialTrainer)->ExponentialTrainer(BaseTrainer)->BaseTrainer(Trainer)->Trainer,最核心训练方法如下所示:

3.P-tuning-v2/model/prefix_encoder.py实现
  该类作用主要是根据前缀prefix信息对其进行编码,假如不考虑batch-size,那么编码后的shape为(prefix-length, 2*layers*hidden)。假如prefix-length=128,layers=12,hidden=768,那么编码后的shape为(128,2*12*768)。

class PrefixEncoder(torch.nn.Module):
    def __init__(self, config):
        super().__init__()
        self.prefix_projection = config.prefix_projection  # 是否使用MLP对prefix进行投影
        if self.prefix_projection:  # 使用两层MLP对prefix进行投影
            self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
            self.trans = torch.nn.Sequential(
                torch.nn.Linear(config.hidden_size, config.prefix_hidden_size),
                torch.nn.Tanh(),
                torch.nn.Linear(config.prefix_hidden_size, config.num_hidden_layers * 2 * config.hidden_size)
            )
        else:  # 直接使用Embedding进行编码
            self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)

    def forward(self, prefix: torch.Tensor):
        if self.prefix_projection:  # 使用MLP对prefix进行投影  
            prefix_tokens = self.embedding(prefix)
            past_key_values = self.trans(prefix_tokens)
        else:  # 不使用MLP对prefix进行投影
            past_key_values = self.embedding(prefix)
        return past_key_values

  这里面可能会有疑问,为啥还要乘以2呢?因为past_key_values前半部分要和key_layer拼接,后半部分要和value_layer拼接,如下所示:

key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)

  说明:代码路径为transformers/models/bert/modeling_bert.py->class BertSelfAttention(nn.Module)的forward()函数中

4.P-tuning-v2/model/question_answering.py
  简单理解,BertPrefixForQuestionAnswering就是在BERT上添加了PrefixEncoder,get_prompt功能主要是生成past_key_values,即前缀信息的编码表示,用于与主要文本序列一起输入BERT模型,以帮助模型更好地理解问题和提供答案。因为选择的SQuAD属于抽取式QA数据集,即根据question从context中找到answer的开始和结束位置即可。

class BertPrefixForQuestionAnswering(BertPreTrainedModel):
    def __init__(self, config):
        self.bert = BertModel(config, add_pooling_layer=False)  # bert模型
        self.qa_outputs = torch.nn.Linear(config.hidden_size, config.num_labels)  # 线性层
        self.prefix_encoder = PrefixEncoder(config)  # 前缀编码器

    def get_prompt(self, batch_size):  # 根据前缀token生成前缀的编码,即key和value值
        past_key_values = self.prefix_encoder(prefix_tokens)
        past_key_values = past_key_values.view(
            bsz,                 # batch_size
            seqlen,              # pre_seq_len
            self.n_layer * 2,    # n_layer表示BERT模型的层数
            self.n_head,         # n_head表示注意力头的数量
            self.n_embd          # n_embd表示每个头的维度
        )
        return past_key_values

    def forward(self, ..., return_dict=None):
        past_key_values = self.get_prompt(batch_size=batch_size)  # 获取前缀信息
        attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
        outputs = self.bert(
            ......
            past_key_values=past_key_values,
        )
        return QuestionAnsweringModelOutput(  # 返回模型输出,包括loss,开始位置的logits,结束位置的logits,hidden states和attentions
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

  重点是outputs = self.bert(past_key_values=past_key_values),将past_key_values传入BERT模型中,起作用的主要是transformers/models/bert/modeling_bert.py->class BertSelfAttention(nn.Module)的forward()函数中。接下来看下past_key_values数据结构,如下所示:

5.BertSelfAttention实现
  BERT网络结构参考附件1,past_key_values主要和BertSelfAttention部分中的key和value进行拼接,如下所示:

(self): BertSelfAttention(
  (query): Linear(in_features=768, out_features=768, bias=True)
  (key): Linear(in_features=768, out_features=768, bias=True)
  (value): Linear(in_features=768, out_features=768, bias=True)
  (dropout): Dropout(p=0.1, inplace=False)
)

  具体past_key_values和key、value拼接实现参考代码,如下所示:

  经过BertSelfAttention部分后,输出outputs的shape和原始输入的shape是一样的,即都不包含前缀信息。

附件1:BERT网络结构
  打印出来BERT模型结构,如下所示:

BertModel(
  (embeddings): BertEmbeddings(
    (word_embeddings): Embedding(21128, 768, padding_idx=0)
    (position_embeddings): Embedding(512, 768)
    (token_type_embeddings): Embedding(2, 768)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) #embeddings层做了LayerNorm
    (dropout): Dropout(p=0.1, inplace=False) #embeddings层做了Dropout
  )
  (encoder): BertEncoder(
    (layer): ModuleList(
      (0-11): 12 x BertLayer( #BertLayer包括BertAttention、BertIntermediate和BertOutput
        (attention): BertAttention( #BertAttention包括BertSelfAttention和BertSelfOutput
          (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (output): BertSelfOutput(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
        (intermediate): BertIntermediate(
          (dense): Linear(in_features=768, out_features=3072, bias=True)
          (intermediate_act_fn): GELUActivation()
        )
        (output): BertOutput(
          (dense): Linear(in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
    )
  )
  (pooler): BertPooler(
    (dense): Linear(in_features=768, out_features=768, bias=True)
    (activation): Tanh()
  )
)

  BERT模型相关类结构在文件D:\Python310\Lib\site-packages\transformers\models\bert\modeling_bert.py中,如下所示:

附件2:SQuAD数据集
  SQuAD是斯坦福大学推出的机器阅读理解问答数据集,其中每个问题的答案来自于对应阅读段落的一段文本,即(问题,原文,答案)。一共有107,785问题,以及配套的536篇文章。除了SQuAD 1.1之外,还推出了难度更大的新版本SQuAD 2.0(《Know What You Don’t Know: Unanswerable Questions for SQuAD》_ACL2018)。
(1)训练集数据

(2)验证集数据

(3)加载SQuAD数据集

"""
执行脚本:python3 dataset_test.py --model_name_or_path L:/20230713_HuggingFaceModel/20231004_BERT/bert-base-chinese --task_name qa --dataset_name squad --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 2 --learning_rate 5e-3 --num_train_epochs 10 --pre_seq_len 128 --output_dir checkpoints/SQuAD-bert --overwrite_output_dir --hidden_dropout_prob 0.1 --seed 11 --save_strategy no --evaluation_strategy epoch --prefix
"""
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments

from arguments import get_args, ModelArguments, DataTrainingArguments, QuestionAnwseringArguments
from tasks.qa.dataset import SQuAD

if __name__ == '__main__':
    args = get_args()  # 从命令行获取参数

    model_args, data_args, training_args, qa_args = args  # model_args是模型相关参数,data_args是数据相关的参数,training_args是训练相关的参数
    tokenizer = AutoTokenizer.from_pretrained(  # 读取tokenizer
            model_args.model_name_or_path,  # 模型名称
            revision=model_args.model_revision,  # 模型版本
            use_fast=True,  # 是否使用fast tokenizer
        )
    dataset = SQuAD(tokenizer, data_args, training_args, qa_args)
    print(dataset)

  打个断点看下dataset数据结构如下所示:


  • input_ids:经过tokenizer分词后的subword对应的下标列表
  • attention_mask:在self-attention过程中,这一块mask用于标记subword所处句子和padding的区别,将padding部分填充为0
  • token_type_ids:标记subword当前所处句子(第一句/第二句/ padding)
  • position_ids:标记当前词所在句子的位置下标
  • head_mask:用于将某些层的某些注意力计算无效化
  • inputs_embeds:如果提供了,那就不需要input_ids,跨过embedding lookup过程直接作为Embedding进入Encoder计算
  • encoder_hidden_states:这一部分在BertModel配置为decoder时起作用,将执行cross-attention而不是self-attention
  • encoder_attention_mask:同上,在cross-attention中用于标记encoder端输入的padding
  • past_key_values:在P-Tuning V2中会用到,主要是把前缀编码和预训练模型每层的key、value进行拼接。
  • use_cache:将保存上一个参数并传回,加速decoding
  • output_attentions:是否返回中间每层的attention输出
  • output_hidden_states:是否返回中间每层的输出
  • return_dict:是否按键值对的形式返回输出,默认为真。

  觉得P-Tuning v2里面还有很多知识点没有讲解清楚,只能后续逐个讲解。仅仅一个P-Tuning v2仓库代码涉及的知识点非常之多,首要就是把Transformer和BERT标准网络结构非常熟悉,还有对各种任务及其数据集要熟悉,对BERT变体网络结构要熟悉,对于PyTorch和Transformer库的深度学习模型训练、验证和测试流程要熟悉,对于Prompt系列微调方法要熟悉。总之,对于各种魔改Transformer和BERT要了如指掌。

参考文献:
[1]P-Tuning论文地址:https://arxiv.org/pdf/2103.10385.pdf
[2]P-Tuning代码地址:https://github.com/THUDM/P-tuning
[3]P-Tuning v2论文地址:https://arxiv.org/pdf/2110.07602.pdf
[4]P-Tuning v2代码地址:https://github.com/THUDM/P-tuning-v2
[5]BertLayer及Self-Attention详解:https://zhuanlan.zhihu.com/p/552062991
[6]https://rajpurkar.github.io/SQuAD-explorer/
[7]https://huggingface.co/datasets/squad

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/113899.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

图片去水印不伤原图快来试试这些方法

也许很多朋友都曾经历过和我相似的困扰。费尽心思找到心仪的图片,却发现下载的图片大多都带有水印。尝试了各种方法想要消除图片上的水印,但效果不尽如人意,反而让画面变得更加凌乱模糊,那么,有什么方法可以图片去水印…

点击跳到详情页

父页面 <template><view class"order-list"><cu-custom bgColor"bg-gradual-blue" :isBack"true"><block slot"content">荒料管理</block></cu-custom><view class"" ><!-- 订…

物流小程序制作教程:从零到有,详细解析

随着互联网的快速发展&#xff0c;物流行业也逐渐实现了数字化转型。为了满足消费者对更加便捷、高效的服务需求&#xff0c;许多物流企业选择制作自己的小程序。本文将通过乔拓云网后台&#xff0c;带你轻松搭建物流小程序&#xff0c;主要分为以下几个部分&#xff1a; 一、进…

Github 自动化部署到GitHub Pages

1.准备工作 新建仓库 新建项目 配置 vite.config.ts base: ./,部署应用包时的基本URL&#xff0c;例&#xff1a;vue-cli 5.x 配置 publicPath 推送到远程仓库 2.配置 GitHub Token 点击 Settings -> Actions -> General 找到 Workflow permissions&#xff0c;选中第…

名称空间,作用域,global和nonlocal

一、名称空间 加载顺序&#xff1a; 1、内置命名空间 2、全局命名空间 3、局部命名空间 取值顺序&#xff1a; 1、局部命名空间 2、全局命名空间 3、内置命名空间 二、作用域 三、global python之闭包https://blog.csdn.net/Python_1981/article/details/133636994 四…

串口通信(8)串口中断“边接收边解析数据“的通信程序

本文为博主 日月同辉&#xff0c;与我共生&#xff0c;csdn原创首发。希望看完后能对你有所帮助&#xff0c;不足之处请指正&#xff01;一起交流学习&#xff0c;共同进步&#xff01; > 发布人&#xff1a;日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…

JavaScript 基础

文章目录 JavaScript初识JavaScriptJavaScript 的组成第一个程序 语法变量的使用动态类型基本数据类型number 数字类型string 字符串类型转义字符求长度字符串拼接 boolean 布尔类型undefined 未定义数据类型null 空值类型 运算符数组数组的遍历函数 对象使用 字面量 创建对象 …

openGauss学习笔记-112 openGauss 数据库管理-管理用户及权限-行级访问控制

文章目录 openGauss学习笔记-112 openGauss 数据库管理-管理用户及权限-行级访问控制 openGauss学习笔记-112 openGauss 数据库管理-管理用户及权限-行级访问控制 行级访问控制特性将数据库访问控制精确到数据表行级别&#xff0c;使数据库达到行级访问控制的能力。不同用户执…

ZYNQ实验---IQ调制实现SSB PART2

一、前言 本文实验在ZYNQ实验—IQ调制实现SSB PART1的基础上进行优化完善。 下图为IQ调制实现SSB PART1中设想实现设计框图 该图设计存在的几个问题&#xff1a; PC-PS的UDP传输存在丢包中断控制发包实际不适合流数据的传输采用的BRAM模块可以存储的空间较小&#xff0c;PC…

正则表达式续篇

位置锚定&#xff1a; ^:行首锚定&#xff0c;表示以什么为开头 例如&#xff1a; $:行尾锚定&#xff0c;表示以什么为结尾 例如&#xff1a; ^&#xff1a;匹配的是空行 例如&#xff1a; ^root$&#xff1a;匹配整行&#xff0c;而且整行只能有这一个字符串 实验&#x…

“第五十八天”

这里c语言的强制类型转换&#xff0c;大小端的问题在之前C语言中都提过了。 这里之前提过的边界对齐在补一点东西。 现代计算机通常是按字节编址&#xff0c;即每个字节对应一个地址&#xff1b;通常也支持按字、按半字、按字节寻址&#xff1b; 之前提过&#xff0c;字和字节…

基于单片机设计的电子柜锁

一、前言 随着现代社会的不断发展&#xff0c;电子柜锁的应用越来越广泛。传统的机械柜锁存在一些不便之处&#xff0c;例如钥匙容易丢失、密码容易泄露等问题。设计一款基于单片机的电子柜锁系统成为了一个有趣而有意义的项目。 该电子柜锁系统通过电磁锁作为柜锁的开关&…

ViT Vision Transformer超详细解析,网络构建,可视化,数据预处理,全流程实例教程

关于ViT的分析和教程&#xff0c;网上又虚又空的东西比较多&#xff0c;本文通过一个实例&#xff0c;将ViT全解析。 包括三部分内容&#xff0c;网络构建&#xff1b;orchview.draw_graph 将网络每一层的结构与输入输出可视化&#xff1b;数据预处理。附完整代码 网络构建 …

通过USM(U盘魔术大师)在PE环境下使用分区助手拷贝磁盘——无损升级硬盘

这里写自定义目录标题 背景本次使用技术步骤1、添加新硬盘2、添加PE3、开机进入BIOS&#xff0c;进入PE4、开始拷贝磁盘5、调整分区5.1 删除系统盘前的所有分区5.2 修改硬盘分区表格式为GUID5.3 新建引导分区 6、修复引导7、大功告成 背景 由于硬盘空间不够的时候就需要更换硬盘…

桥接模式birdge

简介 桥接模式&#xff1a;将抽象与实现相分离&#xff0c;使他们可以独立变化。 角色 抽象化&#xff08;Abstraction&#xff09;角色&#xff1a; 该类持有一个对实现角色的引用&#xff0c;抽象角色中的方法需要实现角色来实现&#xff0c;抽象角色一般为抽象类&#xf…

0基础学习PyFlink——个数滚动窗口(Tumbling Count Windows)

大纲 Tumbling Count WindowsmapreduceWindow Size为2Window Size为3Window Size为4Window Size为5Window Size为6 完整代码参考资料 之前的案例中&#xff0c;我们的Source都是确定内容的数据。而Flink是可以处理流式&#xff08;Streaming&#xff09;数据的&#xff0c;就是…

每日自动化提交git

目前这个功能&#xff0c;有个前提&#xff1a; 这个git代码仓库&#xff0c;是一个人负责&#xff0c;所以不存在冲突问题 我这个仓库地址下载后的本地路径是&#xff1a;D:\Projects\Tasks 然后我在另外一个地方新建了一个bat文件&#xff1a; bat文件所在目录为&#xff1a…

LeetCode----124. 二叉树中的最大路径和

题目 二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。 路径和 是路径中各节点值的总和。 给你一个二叉树的根节点 root ,返回其 最大路径和 。 示…

【实战Flask API项目指南】之二 Flask基础知识

实战Flask API项目指南之 Flask基础知识 本系列文章将带你深入探索实战Flask API项目指南&#xff0c;通过跟随小菜的学习之旅&#xff0c;你将逐步掌握Flask 在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧&#xff01; 前言 当小菜踏入Flask后端开发的世界&…

【OpenCV实现图像找到轮廓的不同特征,就像面积,周长,质心,边界框等等。】

文章目录 概要图像矩凸包边界矩形 概要 OpenCV是一个流行的计算机视觉库&#xff0c;它提供了许多图像处理和分析功能&#xff0c;其中包括查找图像中物体的轮廓。通过查找轮廓&#xff0c;可以提取许多有用的特征&#xff0c;如面积、周长、质心、边界框等。 以下是几种使用…