【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer

相关博客
【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer
【自然语言处理】【大模型】MPT模型结构源码解析(单机版)
【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)
【自然语言处理】【大模型】极低资源微调大模型方法LoRA以及BLOOM-LORA实现代码
【深度学习】【分布式训练】Collective通信操作及Pytorch示例
【自然语言处理】【大模型】Chinchilla:训练计算利用率最优的大语言模型
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型
【自然语言处理】【ChatGPT系列】FLAN:微调语言模型是Zero-Shot学习器
【自然语言处理】【ChatGPT系列】ChatGPT的智能来自哪里?

RMT:能处理超过一百万token的Transformer

​ 近日,RMT的作者放出的评测报告中声称其可以将Transformer能够处理的最大长度放宽到超过100万个tokens。让我们来看看RMT的原理及其实验细节。

一、RMT

论文地址:https://arxiv.org/pdf/2207.06881.pdf

1. 背景

​ 自注意力机制为Transformer的核心组件之一,赋予模型针对单个token聚合上下文tokens的能力。因此,每个token在编码结束后,都能够获得丰富的上下文表示。但是,这种方式会造成全局信息和局部信息都被存储在单个表示中。全局特征被分别存储在所有的token表示上,导致全局特征“模糊”且难以访问。此外,自注意力机制的计算复杂度是输入长度的平方,这也造成模型难以应用在长文本输入上。

​ RMT(Recurrent Memory Transformer)是一种片段级、记忆增强的Transformer,用于解决Transformer在长文本上的问题。RMT使用一种附加在输入序列上的特定记忆token
来实现记忆机制。这些"记忆token"为模型提供了额外的存储容量,便于模型处理那些没有直接表达至任何token的信息。

2. 方法

2.1 Transformer-XL

​ Transformer-XL基于片段级循环和相对位置编码,实现了一种state重用的缓存机制。对于每个transformer层 n n n,前一个片段 M n M^n Mn计算出的hidden state会被缓存。第 n n n层的输入的组成:(1) 前 m m m个缓存的内容;(2) 前一个Transformer层针对当前片段 τ \tau τ的输出;即
H ~ τ n − 1 = [ S G ( M − m : n − 1 ) ∘ H τ n − 1 ] \tilde{H}_{\tau}^{n-1}=[SG(M_{-m:}^{n-1})\circ H_{\tau}^{n-1}] \\ H~τn1=[SG(Mm:n1)Hτn1]
这里, M − m : n − 1 M_{-m:}^{n-1} Mm:n1是第 n − 1 n-1 n1层的前 m m m个缓存内容, S G SG SG表示不需要梯度, ∘ \circ 表示拼接, H τ n − 1 H_{\tau}^{n-1} Hτn1表示模型第 n − 1 n-1 n1层的输出。

H ~ τ n − 1 \tilde{H}_{\tau}^{n-1} H~τn1是片段 τ \tau τ针对模型第 n n n层(TL)的输入,产生输出的过程为
Q τ n = W q n H τ n − 1 K τ n = W k n H ~ τ n − 1 V τ n = W v n H ~ τ n − 1 H τ n = T L ( Q τ n , K τ n , V τ n ) \begin{align} Q_\tau^n&=W_q^n H_{\tau}^{n-1} \\ K_\tau^n&=W_k^n \tilde{H}_{\tau}^{n-1} \\ V_\tau^n&=W_v^n\tilde{H}_{\tau}^{n-1} \\ H_\tau^n&=TL(Q_\tau^n,K_\tau^n,V_\tau^n) \end{align} \\ QτnKτnVτnHτn=WqnHτn1=WknH~τn1=WvnH~τn1=TL(Qτn,Kτn,Vτn)
其中, W q n , W k n , W v n W_q^n,W_k^n,W_v^n Wqn,Wkn,Wvn是注意力的投影矩阵。注意, K τ n K_{\tau}^n Kτn V τ n V_{\tau}^n Vτn在计算时使用的是包含了缓存内容的 H ~ τ n − 1 \tilde{H}_{\tau}^{n-1} H~τn1,而 Q τ n Q_\tau^n Qτn则使用了 H τ n − 1 H_\tau^{n-1} Hτn1。在Transformer-XL的自注意力层中使用了相似位置编码。

2.2 RMT

在这里插入图片描述

​ 像GMAT、ETC、Memory Transformer等记忆增强的Transformer模型,通常会使用特殊的全局tokens来存储表示。通常,"记忆token"s会被添加至输入序列的开头位置。然而,decoder-only架构的causal attention mask使得在序列开始处的"记忆token"s无法收集到后续tokens的信息。若把"记忆token"放置在序列的末尾,前面的token就无法访问这些表示。为了解决这个问题,在序列样本处理时添加了一个循环。"记忆token"的表示放置在当前片段的末尾,然后作为下一个片段开始和末尾的记忆表示初始化

​ RMT的输入是在标准方式基础上,添加了特殊tokens [ mem ] [\text{mem}] [mem]。每个"记忆token"都是一个实值向量。 m m m个"记忆token"分别被拼接至当前片段表示 H r 0 \text{H}_r^0 Hr0的开始和末尾:
H ~ τ 0 = [ H τ m e m ∘ H τ 0 ∘ H τ m e m ] H ˉ τ N = Transformer ( H ~ τ 0 ) [ H τ r e a d ∘ H τ N ∘ H τ w r i t e ] : = H ˉ τ N \begin{align} &\tilde{H}_{\tau}^0=[H_{\tau}^{mem}\circ H_{\tau}^0\circ H_{\tau}^{mem}] \\ &\bar{H}_\tau^N=\text{Transformer}(\tilde{H}_{\tau}^0) \\ &[H_\tau^{read}\circ H_\tau^{N}\circ H_{\tau}^{write}]:=\bar{H}_\tau^N \end{align} \\ H~τ0=[HτmemHτ0Hτmem]HˉτN=Transformer(H~τ0)[HτreadHτNHτwrite]:=HˉτN
其中, N N N的模型的层数。总的来说,就是前一片段的"记忆token"拼接当前片段,然后进行前向传播。传播的结果中包含了当前层的表现以及"记忆token"的表示

​ 序列开始处的一组"记忆token"被称为"读记忆",其允许后续的tokens能够读取前一个片段的信息。末尾处的一组"记忆token"则称为"写记忆",其能够更新“记忆”的表示。因此, H τ w r i t e H_{\tau}^{write} Hτwrite包含了片段 τ \tau τ的更新后"记忆token"s。

​ 输入序列中的片段会被顺序处理。为了使片段间能够循环链接,将当前片段输出的"记忆token"传递给下一个片段的输入:
H τ + 1 m e m : = H τ w r i t e H ~ τ + 1 0 = [ H τ + 1 m e m ∘ H τ + 1 0 ∘ H τ + 1 m e m ] \begin{align} & H_{\tau+1}^{mem}:= H_{\tau}^{write} \\ & \tilde{H}_{\tau+1}^0 = [H_{\tau+1}^{mem}\circ H_{\tau+1}^0\circ H_{\tau+1}^{mem}] \end{align} \\ Hτ+1mem:=HτwriteH~τ+10=[Hτ+1memHτ+10Hτ+1mem]
RMT是基于全局"记忆token"实现的,其能够保证骨干Transformer不变的情况下,增强任意Transformer类模型的能力。“记忆token”仅在模型的输入和输出上进行操作。

2.3 两者的区别

(1) RMT为每个片段存储 m m m个记忆向量,而Transformer-XL则为每个片段存储 m × N m\times N m×N向量。

(2) RMT会将前一个片段的记忆表示与当前片段的tokens一起送入Transformer层进行处理。

(3) "读/写记忆"块能够访问当前块的所有tokens,causal attention mask仅应用在输入序列上。

(4) 不同于Transformer-XL,RMT反向传播时不会去掉"记忆"部分的梯度。(本文实验的片段间梯度传播范围从0到4)

3. 原论文实验

在这里插入图片描述

​ 上图是RMT在三个需要长文本处理能力的任务Copy、Reverse和Associative retrieval上的实验结果。图的横坐标是切分的片段数,纵坐标是准确率。可以看到,RMT的效果都更好。

在这里插入图片描述

​ 上表是语言建模任务的困惑度指标。显然,Transformer-XL和RMT的效果要好于baseline模型和Memory Transformer。

二、扩展至100万tokens

论文地址:https://arxiv.org/pdf/2304.11062.pdf

1. RMT Encoder版

在这里插入图片描述

​ 输入样本被分割为 m m m个片段,"记忆token"被添加到片段的开始,并与片段的其余tokens一起处理。对于BERT这样的encoder-only结构,"记忆token"仅被添加到片段的开始,而不像decoder-only那样分别添加read和write。对于时间步 τ \tau τ和片段 H τ 0 H_{\tau}^0 Hτ0,执行步骤为:
H ~ τ 0 = [ H τ m e m ∘ H τ 0 ] H ˉ τ N = Transformer ( H ~ τ 0 ) [ H ˉ τ m e m ∘ H τ N ] : = H ˉ τ N \begin{align} &\tilde{H}_{\tau}^0=[H_{\tau}^{mem}\circ H_{\tau}^0] \\ &\bar{H}_{\tau}^N=\text{Transformer}(\tilde{H}_{\tau}^0) \\ &[\bar{H}_{\tau}^{mem}\circ H_{\tau}^N]:=\bar{H}_{\tau}^N \end{align} H~τ0=[HτmemHτ0]HˉτN=Transformer(H~τ0)[HˉτmemHτN]:=HˉτN
其中, N N N是Transformer的层数。

​ 在前向传播后, H ˉ τ m e m \bar{H}_{\tau}^{mem} Hˉτmem片段 τ \tau τ的记忆token。输入序列的片段会按顺序逐个被处理。为了确保能够实现递归的连接,将当前片段的"记忆token"传递为下一个片段的输入:
H τ + 1 m e m : = H ˉ τ m e m H ~ τ + 1 0 = [ H τ + 1 m e m ∘ H τ + 1 0 ] \begin{align} & H_{\tau+1}^{mem}:=\bar{H}_{\tau}^{mem} \\ & \tilde{H}_{\tau+1}^0=[H_{\tau+1}^{mem}\circ H_{\tau+1}^0] \end{align} \\ Hτ+1mem:=HˉτmemH~τ+10=[Hτ+1memHτ+10]

2. 记忆任务

在这里插入图片描述

​ 为了测试记忆能力,构建了需要记忆简单事实和基本推理的合成数据集。任务的输入是若干个事实和一个需要通过这些事实才能回答的问题。任务的形式为6分类,每个类别表示一个独立的答案选项。

  • 事实记忆

    该任务是测试RMT长时间存储信息的能力。在最简单的例子中,事实总是位于输入的开始,而问题在输入的末尾。问题和答案之间插入不相关的文本,完整的输入无法放入单个模型中。

  • 事实检测和记忆

    该任务增加了难度,将事实移动到随机的位置。需要模型从不相关文本中区分出事实,写入到记忆中,随后用来回答问题。

  • 用记忆的事实进行推理

    两个事实被添加至输入的随机位置上,问题放置在输入的末尾,该问题需要所有的事实才能回答。

3. 实验

​ 实验使用bert-base-cased作为backbone。所有模型都是用尺寸为10的memory来增强,并使用AdamW优化器进行优化。

3.1 课程学习

​ 使用训练schedule能够极大的改善准确率和稳定性。初始,RMT在较短的任务上进行训练,在训练收敛之后,再继续增加长度。

3.2 外推能力

在这里插入图片描述

​ 为了评估RMT泛化到不同序列长度的能力,评估了在不同长度上训练的模型,结果如上图。模型在较短的任务上效果更好。唯一的例外是单片段推理任务,模型一旦在更长序列上训练,那么效果就会变差。

​ 随着训练片段数量的增加,RMT也能够泛化到更长的序列上。在5个或者更长的片段上进行训练后,RMT几乎可以完美的泛化到两倍的长度。
在这里插入图片描述

​ 为了能够测试泛化的极限,将验证任务的尺寸从4096增加至2043904,RMT在如此长的序列上也能够有很好的效果。

三、总结

  • 总的来说,RMT的思路简单。相比Transformer-XL来说,片段间传递的参数会少很多。
  • RMT采用递归的方式传递信息,那么训练时梯度也需要回传,这导致训练时不太能并行。
  • 原始论文中采用decoder-only架构,但是在扩展至百万tokens的实验中采用了encoder-only架构,是decoder-only的效果不够好吗?
  • 评测的任务总体比较简单,迁移至当前的LLM上效果怎么样还比较难以确定。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110613.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023年05月 Python(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 运行以下程序,如果通过键盘先后输入的数是1和3,输出的结果是?( &#x…

学习视频剪辑:如何从指定时段快速抽出视频图片!高效技巧分享

随着数字媒体的普及,越来越多的人开始接触视频剪辑。在视频剪辑过程中,有时候我们需要从指定时段快速抽出视频图片。这不仅可以帮助我们提高剪辑效率,还可以让我们的视频更加丰富多彩。本文将分享一些高效技巧,帮助你轻松实现从指…

企业计算机电脑中了locked勒索病毒怎么办,勒索病毒解密,数据恢复

网络技术的不断发展,为我们的企业带来了很大的便利,大部分企业都会选择合适的办公软件系统,方便自身的生产与运营。近期,网络上的locked勒索病毒又开始攻击企业的计算机服务器了,经过10月份云天数据恢复中心对企业数据…

基于机器视觉的银行卡识别系统 - opencv python 计算机竞赛

1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的银行卡识别算法设计 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng…

水果FL Studio21.2体验版下载安装教程(增加云服务功能)

FL Cloud 音效库包含开放版权的Loop和采样,以及来自 FL Studio 著名用户的艺术家独家内容。更新后,现在还可以使用人工智能辅助母带处理和数字发行功能来制作音轨。FL Studio 由最初的 "Fruity Loops" DAW 发展而来,25 年来&#x…

非母语玩家如何撰写英文研究性论文:2 Methodology

参考书——《Science Research Writing for non-native Speakers of English》 文章目录 1 Structure 结构2 语法和写作技巧2.1 Passives and Tense Pairs: 被动语态以及时态对2.2 a与the的使用方法2.3 Adverbs and adverb location: 副词及其位置 3 Build a Model——构建Meth…

Linux系统封装ISO镜像(自动安装)

一、准备一个系统 centos7或者centos8都可以;最小化或者桌面版的都可以,自行选择 二、安装自定义镜像工具 yum -y install createrepo mkisofs openssl rsync syslinux三、挂载镜像 创建挂载点 mkdir /mnt/cdrommount /dev/sr0 /mnt/cdrom四、同步 /mnt/cdrom/ 下的文件到 …

基于深度学习的安全帽识别检测系统(python OpenCV yolov5)

收藏和点赞,您的关注是我创作的动力 文章目录 概要 一、研究的内容与方法二、基于深度学习的安全帽识别算法2.1 深度学习2.2 算法流程2.3 目标检测算法2.3.1 Faster R-CNN2.3.2 SSD2.3.3 YOLO v3 三 实验与结果分析3.1 实验数据集3.1.1 实验数据集的构建3.1.2 数据…

【Python】Python语法速成

目录 一、Python中的概念 二、Python和C/C++中的一些不同点 三、分支语句 四、for循环 五、函数 六、列表[]

CTB810 HN800 58914444 NDPI-02 DSTC190

CTB810 HN800 58914444 NDPI-02 DSTC190 控制微系统公司宣布推出SCADASense 4203,这是一款高精度集成气体流量计算机,集成了多变量传感器和完整的SCADAPack PLC。作为SCADASense系列流量和压力变送器的最新成员,4203设计用于各种过程控制应…

微信小程序的踩坑记录

问题记录: 嵌套太深 导致不起作用 点击我的工单 但是打印的结果值却是我的问题 没有点到我的工单上边去 原因:图片粘连在一起 解决方案:给图片100% 达到父元素的100% 最后成功蓝色的不粘连

innovus:命令返回列表元素超过显示上限如何解决

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 相关文章链接: innovus IMPSP-270 place阶段lib_cell找不到可放置位置问题 all_fanout等命令,返回列表太长,超过显示上限(默认…

ubuntu 22.04 源码安装 apollo 8.0

对于其他的关于GPU的安装包需求,这里不再列出,因为我之前安装过,偷个懒就不写了,哈哈哈哈1, 安装docker 安装docker命令(这里的安装命令都是在docker官网,还有安装包): 1, 设置docker的apt仓库 # Add Do…

一张动图告诉你,输入网址之后,发生了什么事情?

让我们一步一步地来看这个过程。 步骤1: 用户在浏览器中输入一个URL(比如www.bytebytego.com),然后按下回车键。首先,我们需要将这个URL转换成一个IP地址。通常,这个映射关系会被存储在缓存中&#xff0…

CVE-2021-41773/42013 apache路径穿越漏洞

影响范围 CVE-2021-41773 Apache HTTP server 2.4.49 CVE-2021-42013 Apache HTTP server 2.4.49/2.4.50 漏洞原理 Apache HTTP Server 2.4.49版本使用的ap_normalize_path函数在对路径参数进行规范化时会先进行url解码,然后判断是否存在…/的路径穿越符&#xf…

【项目管理】生命周期风险评估

规划阶段目标:识别系统的业务战略,以支撑系统的安全需求及安全战略 规划阶段评估重点:1、本阶段不需要识别资产和脆弱性;2、应根据被评估对象的应用对象、应用环境、业务状况、操作要求等方面识别威胁; 设计阶段目标…

GameGPT:使用AI实现游戏开发自动化

使用多代理基于AI开发游戏的这种方法果真切实可行吗?如今,从事游戏开发如同走钢丝。游戏行业处于一种怪异的境地:游戏变得越来越酷,越来越有开创性,但同时也变得越来越让人头疼:更大的团队、更长的工作时间…

GoLong的学习之路(十一)语法之标准库 fmt.Printf的使用

上回书说到,函数,说了函数是如何实现的,高级函数有哪几种调用方式,本章我将介绍fmt 标准库中我常用的一些函数。 文章目录 fmtfmt的向外输出print格式化占位通用占位符布尔类型占位整型占位浮点数与复数字符串和[]byte指针宽度表示…

科技云报道:打造生成式AI应用,什么才是关键?

科技云报道原创。 生成式AI作为当前人工智能的前沿领域,全球多家科技企业都在加大生成式AI的研发投入力度。 随着技术、产品及应用等方面不断推出重要成果,如今有更多的行业用户在思考该如何将生成式AI应用落地。 但开发生成式AI应用是一个充满挑战的…

线段树 区间赋值 + 区间加减 + 求区间最值

线段树好题:P1253 扶苏的问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 区间赋值 区间加减 求区间最大。 对于区间赋值和区间加减来说,需要两个懒标记,一个表示赋值cover,一个表示加减add。 区间赋值的优先级大于区间加…