pytorch 入门 (五)案例三:乳腺癌识别-VGG16实现

本文为🔗小白入门Pytorch内部限免文章

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】乳腺癌识别
  • 🍖 原作者:K同学啊

在本案例中,我将带大家探索一下深度学习在医学领域的应用–完成乳腺癌识别,乳腺癌是女性最常见的癌症形式,浸润性导管癌 (IDC) 是最常见的乳腺癌形式。准确识别和分类乳腺癌亚型是一项重要的临床任务,利用深度学习方法识别可以有效节省时间并减少错误。 我们的数据集是由多张以 40 倍扫描的乳腺癌 (BCa) 标本的完整载玻片图像组成。

关于环境配置请看我之前缩写博客:https://blog.csdn.net/qq_33489955/article/details/132890434?spm=1001.2014.3001.5501

数据集:链接:https://pan.baidu.com/s/1xkqsqsRRwlBOl5L9t_U0UA?pwd=vgqn
提取码:vgqn
–来自百度网盘超级会员V4的分享

目录

  • 一、 前期准备
    • 1. 设置GPU
    • 2. 导入数据
    • 3. 划分数据集
  • 二、手动搭建VGG-16模型
      • 1. 搭建模型
    • 2. 查看模型详情
  • 三、 训练模型
    • 1. 编写训练函数
    • 3. 编写测试函数
    • 3. 正式训练
  • 四、 结果可视化
    • 1. Loss与Accuracy图
    • 2. 指定图片进行预测
    • 3. 模型评估

一、 前期准备

import torch

print(torch.__version__) # 查看pytorch版本
2.0.1+cu118

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2. 导入数据

import os,PIL,random,pathlib

data_dir = './data/2-data/'
data_dir = pathlib.Path(data_dir)

提问:已经有路径不是直接使用就可以了吗,为什么还要将其转化为路径对象。

回答:当我们使用传统的字符串来表示文件路径时,确实可以工作,但pathlib提供的对象方法对于文件路径的操作更为简洁和直观。

以下是使用pathlib的一些优点:

  1. 跨平台兼容性pathlib自动处理不同操作系统的路径分隔符问题。例如,Windows使用\,而Unix和Mac使用/。使用pathlib,你不需要关心这些细节。
  2. 链式操作:你可以方便地使用链式方法来处理路径。例如,path.parent返回父目录,path.stem返回文件的基本名称(不带扩展名)等。
  3. 读写简便pathlib.Path对象有read_text(), write_text(), read_bytes(), 和write_bytes()等方法,可以直接读写文件,而无需再使用open函数。
  4. 创建和删除目录:使用pathlib, 你可以很容易地创建 (mkdir()) 或删除 (rmdir()) 目录。

以下是一个简单的例子来比较两者:

使用传统的os模块:

import os  
file_path = os.path.join("folder1", "folder2", "myfile.txt")  

使用pathlib

from pathlib import Path  
file_path = Path("folder1") / "folder2" / "myfile.txt"  

所以,虽然直接使用字符串路径是可以的,但使用pathlib可以使代码更加简洁、可读和跨平台兼容。

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(data_dir, transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 13403
    Root location: data\2-data
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx
{'0': 0, '1': 1}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x14191aec850>,
 <torch.utils.data.dataset.Subset at 0x141c3e693d0>)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=8)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=8)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

提问:为什么结果只输出一次,是因为测试数据集只有一个批次,即32张图片吗

回答:不,结果只输出一次是因为您的代码中包含了一个 break 语句。这个 break 会在第一次迭代后立即退出 for 循环,因此您只看到了第一个批次的输出。

如果您想确认 test_dl 中有多少批次,您可以尝试以下代码:

num_batches = len(test_dl)  
print("Number of batches in test_dl:", num_batches)  

这将告诉您 test_dl 中有多少个批次。如果这个数字是1,那么确实只有32张图片。但是,如果这个数字大于1,那么 test_dl 会包含更多的图片。每个批次都有32张图片(除了可能的最后一个批次,它可能包含少于32张图片,取决于数据集的总数)。

二、手动搭建VGG-16模型

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

Image Name

1. 搭建模型

import torch.nn.functional as F

class vgg16(nn.Module):
    def __init__(self):
        super(vgg16, self).__init__()
        # 卷积块1
        self.block1 = nn.Sequential(  # # 这定义了一个名为block1的属性。nn.Sequential是一个容器,它按照它们被添加到容器中的顺序执行其中的层或操作。
            nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), # 这添加了一个2D卷积层。它接受3个通道的输入(例如RGB图像),并产生64个通道的输出。它使用3x3的卷积核,步长为1,和1的填充。
            nn.ReLU(), # 这添加了一个ReLU激活函数。它将所有的负值变为0,其他值保持不变。
            nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),  # 这是另一个2D卷积层。它接受上一个卷积层的64个通道的输出,并产生64个通道的输出。
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) # # 这添加了一个2D最大池化层。它使用2x2的窗口和2的步长来减少每个通道的尺寸的一半。
        )
        # 卷积块2
        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块3
        self.block3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块4
        self.block4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        # 卷积块5
        self.block5 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        )
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=512*7*7, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=4096),
            nn.ReLU(),
            nn.Linear(in_features=4096, out_features=2)
        )

    def forward(self, x):

        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = vgg16().to(device)
model
Using cuda device

vgg16(
  (block1): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block2): Sequential(
    (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block3): Sequential(
    (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block4): Sequential(
    (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (block5): Sequential(
    (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): ReLU()
    (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU()
    (2): Linear(in_features=4096, out_features=4096, bias=True)
    (3): ReLU()
    (4): Linear(in_features=4096, out_features=2, bias=True)
  )
)

2. 查看模型详情

!pip install torchsummary
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: torchsummary in c:\users\cheng\appdata\roaming\python\python310\site-packages (1.5.1)
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
           Linear-34                 [-1, 4096]      16,781,312
             ReLU-35                 [-1, 4096]               0
           Linear-36                    [-1, 2]           8,194
================================================================
Total params: 134,268,738
Trainable params: 134,268,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.52
Params size (MB): 512.19
Estimated Total Size (MB): 731.29
----------------------------------------------------------------

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 10

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')
Epoch: 1, Train_acc:76.6%, Train_loss:0.487, Test_acc:82.7%, Test_loss:0.385, Lr:1.00E-04
Epoch: 2, Train_acc:84.9%, Train_loss:0.364, Test_acc:79.9%, Test_loss:0.442, Lr:1.00E-04
Epoch: 3, Train_acc:84.0%, Train_loss:0.376, Test_acc:84.3%, Test_loss:0.349, Lr:1.00E-04
Epoch: 4, Train_acc:85.7%, Train_loss:0.339, Test_acc:86.1%, Test_loss:0.319, Lr:1.00E-04
Epoch: 5, Train_acc:86.3%, Train_loss:0.329, Test_acc:85.5%, Test_loss:0.331, Lr:1.00E-04
Epoch: 6, Train_acc:86.3%, Train_loss:0.324, Test_acc:86.2%, Test_loss:0.315, Lr:1.00E-04
Epoch: 7, Train_acc:86.8%, Train_loss:0.313, Test_acc:87.8%, Test_loss:0.298, Lr:1.00E-04
Epoch: 8, Train_acc:87.3%, Train_loss:0.302, Test_acc:86.3%, Test_loss:0.325, Lr:1.00E-04
Epoch: 9, Train_acc:87.7%, Train_loss:0.297, Test_acc:84.7%, Test_loss:0.363, Lr:1.00E-04
Epoch:10, Train_acc:88.5%, Train_loss:0.282, Test_acc:87.7%, Test_loss:0.295, Lr:1.00E-04
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


请添加图片描述

2. 指定图片进行预测

from PIL import Image 

classes = ["正常细胞", "乳腺癌细胞"]

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./data/2-data/0/8863_idx5_x451_y501_class0.png', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)
预测结果是:正常细胞

请添加图片描述

3. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
(0.8780305856023871, 0.29799242158021244)
# 查看是否与我们记录的最高准确率一致
epoch_test_acc
0.8780305856023871

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110564.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用大白话聊聊SpringBoot的自动配置原理(面试题详解)

首先&#xff0c;SpringBoot的自动配置不等于自动装配&#xff01; 自动配置是Auto-Configuration&#xff0c;针对的是SpringBoot中的配置类&#xff0c; 而自动装配是Autowire&#xff0c;针对的是Spring中的依赖注入。 进入主题&#xff1a; 自动配置简单来说就是自动去把…

Cesium 问题:在 cesium 中加载 geojson 文件,绘制带边框的多边形并设置贴地后,边框不展示,该怎么配置呢?

文章目录 问题分析问题 在 cesium 中加载 geojson 文件,绘制带边框的多边形并设置贴地后,边框不展示,该怎么配置呢? 代码如下: var promise = Cesium.GeoJsonDataSource.load(data/obstacle/ExOceanData/result.geojson

自动化测试的一些问题合集

问题1、 ipykernel_launcher.py: error: unrecognized arguments: usage: ipykernel_launcher.py [-h] [--id ID] [--test TEST] [--env ENV] ipykernel_launcher.py: error: unrecognized arguments: --ip127.0.0.1 --stdin9003 --control9001 --hb9000 --Session.signature_…

SAML- 安全断言标记语言

一、概念 安全断言标记语言&#xff08;SAML&#xff09;是一种开放标准&#xff0c;用于在各方之间&#xff08;特别是身份提供商和服务提供商之间&#xff09;交换身份验证和授权数据。SAML 是一种基于XML的安全断言标记语言&#xff08;服务提供商用来做出访问控制决策的语句…

python使用ffmpeg来制作音频格式转换工具(优化版)

简介:一个使用python加上ffmpeg模块来进行音频格式转换的工具。 日志: 20231030:第一版,设置了简单的UI布局和配色,实现音频转为Mp3、AAC、wav、flac四种格式。可解析音频并显示信息,可设置转换后的保存路径 UI界面: 编程平台:visual studio code 编程语言:python 3…

基于 Center 的 3D 目标检测和跟踪

论文地址&#xff1a;https://arxiv.org/abs/2006.11275 论文代码&#xff1a;https://github.com/tianweiy/CenterPoint 3D 目标通常表示为点云中的 3D Boxes。 CenterPoint 在第一阶段&#xff0c;使用关键点检测器检测对象的中心&#xff0c;然后回归到其他属性&#xff0…

AcWing 第127场周赛 构造矩阵

构造题目&#xff0c;考虑去除掉最后一行最后一列先进行考虑&#xff0c;假设除了最后一行和最后一列都已经排好了&#xff08;你可以随便排&#xff09;&#xff0c;那么分析知最后一个数字由限制以外其他都已经确定了&#xff0c;无解的情况是k为-1 并且n&#xff0c;m的奇偶…

C++进阶语法——STL 标准模板库(上)(Standard Template Library)【学习笔记(六)】

文章目录 STL 标准模板库1、 STL简介2、STL容器的类别3、STL迭代器的类别4、STL算法的类别5、泛型编程&#xff08;generic programming&#xff09;6、C模板&#xff08;template&#xff09;6.1 函数模板&#xff08;function template&#xff09;6.2 类模板&#xff08;cla…

MAMP Pro 6.8.1

MAMP Pro是一款MacPHP/MySQL开发环境软件&#xff0c;可以将电脑变成一个完整的Web开发环境。无论个人开发者、网站管理员还是团队协作&#xff0c;MAMP Pro都提供了强大的工具和便捷的管理方式&#xff0c;能够更加高效地构建和测试网站。 MAMP Pro的基本功能包括集成AMP环境&…

【网络协议】聊聊套接字socket

网络编程我们知道是通过socket进行编程的&#xff0c;其实socket也是基于TCP和UDP协议进行编程的。但是在socket层面是感知不到下层的&#xff0c;所以在设置参数的时候&#xff0c;其实是端到端协议智商的网络层和传输层。TCP是数据流所以设置为SOCK_STREAM&#xff0c;而UDP是…

实现基于 Azure DevOps 的数据库 CI/CD 最佳实践

数据库变更一直是整个应用发布过程中效率最低、流程最复杂、风险最高的环节&#xff0c;也是 DevOps 流程中最难以攻克的阵地。那我们是否能在具体的 CI/CD 流程中&#xff0c;像处理代码那样处理数据库变更呢&#xff1f; DORA 调研报告 DORA&#xff08;DevOps Research &am…

​学习一下,什么是预包装食品?​

预包装食品&#xff0c;指预先定量包装或者制作在包装材料和容器中的食品&#xff1b;包括预先定量包装以及预先定量制作在包装材质和容器中并且在一定量限范围内具有统一的质量或体积标识的食品。简单说&#xff0c; 就是指在包装完成后即具有确定的量值&#xff0c;这一确定的…

Ajax学习笔记第4天

做决定之前仔细考虑&#xff0c;一旦作了决定就要勇往直前、坚持到底&#xff01; 【1 模仿百度招聘】 整个流程展示&#xff1a; 1.文件目录 2.页面效果展示及代码 data中的page1数据展示 2.1 主页 index.html:index里面代码部分解释 underscore.js :模板页面的相关代码 &…

2023最新版本 FreeRTOS教程 -1-标准库移植FreeRTOS

源码下载 官网下载驱动 点击直达 源码剪裁 剪裁之后的图片,找我免费获取 添加进MDK 配置滴答定时器 全部工程获取 查看下方头像

微服务框架SpringcloudAlibaba+Nacos集成RabbiMQ

目前公司使用jeepluscloud版本&#xff0c;这个版本没有集成消息队列&#xff0c;这里记录一下&#xff0c;集成的过程&#xff1b;这个框架跟ruoyi的那个微服务版本结构一模一样&#xff0c;所以也可以快速上手。 1.项目结构图&#xff1a; 配置类的东西做成一个公共的模块 …

省市区三级联动查询redis(通过python脚本导入数据)

最近工作有一个工作需求是实现省市区联动&#xff0c;点击省下拉框&#xff0c;选中一个省&#xff0c;然后再选市&#xff0c;最后选区&#xff0c;当然最重要的首先自然是数据了&#xff0c;没数据怎么测试接口&#xff0c;我数据是在 https://hxkj.vip/demo/echartsMap/ 这里…

小程序request请求封装

以上为本人的项目目录 1.首先在utils中创建request.js文件封装request请求&#xff0c;此封装带上了token&#xff0c;每次请求都会自带token&#xff0c;需要你从后端获取后利用wx.setStorageSync(token,返回的token),不使用的话就是空。 直接复制即可&#xff0c;需要改一下…

关于 MapboxGL 在 Vue 中的简单使用

前言问题 关于我为什么使用了 在线的 js引入方法&#xff0c;而不是使用 npm 直接下载依赖问题&#xff0c;之前有一篇文章讲过原因&#xff1a;关于 Vue-iClient-MapboxGL 的使用注意事项 网上提供的 vue-iclient-mapboxgl 比较多&#xff0c;但是我这里使用的是 iclient-su…

视频剪辑达人教您:如何运用嵌套合并技巧制作固定片尾

在视频剪辑的过程中&#xff0c;嵌套合并技巧是一种非常实用的技术&#xff0c;可以帮助您将多个素材叠加在一起&#xff0c;制作出更加丰富多彩的视频。本文将由视频剪辑达人为您详细介绍如何运用云炫AI智剪嵌套合并技巧制作固定片尾&#xff0c;让您的视频剪辑水平更上一层楼…

【Apache Flink】Flink DataStream API的基本使用

Flink DataStream API的基本使用 文章目录 前言1. 基本使用方法2. 核心示例代码3. 完成工程代码pom.xmlWordCountExample测试验证 4. Stream 执行环境5. 参考文档 前言 Flink DataStream API主要用于处理无界和有界数据流 。 无界数据流是一个持续生成数据的数据源&#xff0…