深度学习(生成式模型)——DDIM:Denoising Diffusion Implicit Models

文章目录

  • 前言
  • 为什么DDPM的反向过程与前向过程步数绑定
  • DDIM如何减少DDPM反向过程步数
  • DDIM的优化目标
  • DDIM的训练与测试

前言

上一篇博文介绍了DDIM的前身DDPM。DDPM的反向过程与前向过程步数一一对应,例如前向过程有1000步,那么反向过程也需要有1000步,这导致DDPM生成图像的效率非常缓慢。本文介绍的DDIM将降低反向过程的推断步数,从而提高生成图像的效率。

值得一提的是,DDIM的反向过程仍然是马尔可夫链,但论文里有讨论非马尔可夫链的生成模型。本博文只总结DDIM如何提高DDPM的生成图像效率。

为什么DDPM的反向过程与前向过程步数绑定

DDPM反向过程的推导公式为

q ( x ^ t − 1 ∣ x ^ t ) = q ( x ^ t − 1 ∣ x ^ t , x ^ 0 ) = q ( x ^ t − 1 , x ^ t , x ^ 0 ) q ( x ^ t , x ^ 0 ) = q ( x ^ t ∣ x ^ t − 1 , x ^ 0 ) q ( x ^ t − 1 , x ^ 0 ) q ( x ^ t ∣ x ^ 0 ) q ( x ^ 0 ) = q ( x ^ t ∣ x ^ t − 1 , x ^ 0 ) q ( x ^ t − 1 ∣ x ^ 0 ) q ( x ^ 0 ) q ( x ^ t ∣ x ^ 0 ) q ( x ^ 0 ) = q ( x ^ t ∣ x ^ t − 1 , x ^ 0 ) q ( x ^ t − 1 ∣ x ^ 0 ) q ( x ^ t ∣ x ^ 0 ) = q ( x ^ t ∣ x ^ t − 1 ) q ( x ^ t − 1 ∣ x ^ 0 ) q ( x ^ t ∣ x ^ 0 ) \begin{aligned} q(\hat x_{t-1}|\hat x_{t})&=q(\hat x_{t-1}|\hat x_{t},\hat x_0)\\ &=\frac{q(\hat x_{t-1},\hat x_t,\hat x_0)}{q(\hat x_t,\hat x_0)}\\ &=\frac{q(\hat x_{t}|\hat x_{t-1},\hat x_0)q(\hat x_{t-1},\hat x_0)}{q(\hat x_t|\hat x_0)q(\hat x_0)}\\ &=\frac{q(\hat x_{t}|\hat x_{t-1},\hat x_0)q(\hat x_{t-1}|\hat x_0)q(\hat x_0)}{q(\hat x_t|\hat x_0)q(\hat x_0)}\\ &=\frac{q(\hat x_{t}|\hat x_{t-1},\hat x_0)q(\hat x_{t-1}|\hat x_0)}{q(\hat x_t|\hat x_0)}\\ &=\frac{ q(\hat x_{t}|\hat x_{t-1})q(\hat x_{t-1}|\hat x_0)}{q(\hat x_t|\hat x_0)} \end{aligned} q(x^t1x^t)=q(x^t1x^t,x^0)=q(x^t,x^0)q(x^t1,x^t,x^0)=q(x^tx^0)q(x^0)q(x^tx^t1,x^0)q(x^t1,x^0)=q(x^tx^0)q(x^0)q(x^tx^t1,x^0)q(x^t1x^0)q(x^0)=q(x^tx^0)q(x^tx^t1,x^0)q(x^t1x^0)=q(x^tx^0)q(x^tx^t1)q(x^t1x^0)

值得一提的是,反向过程的马尔可夫状态 x ^ t \hat x_t x^t x ^ t − 1 \hat x_{t-1} x^t1不一定要与前向过程一致,如下图所示,反向过程的状态 x ^ T \hat x_T x^T x ^ T − 1 \hat x_{T-1} x^T1对应前向过程的 x T x_T xT x T − 2 x_{T-2} xT2
在这里插入图片描述
从上述公式构成来看,反向过程的概率图形式与 q ( x ^ t ∣ x ^ t − 1 ) q(\hat x_t|\hat x_{t-1}) q(x^tx^t1)有关。而在DDPM中, q ( x ^ t ∣ x ^ t − 1 ) q(\hat x_t|\hat x_{t-1}) q(x^tx^t1)与前向过程 q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xtxt1)一致,这就导致DDPM的概率图为
在这里插入图片描述

因此利用DDPM推导的 q ( x ^ t − 1 ∣ x ^ t ) q(\hat x_{t-1}|\hat x_{t}) q(x^t1x^t)进行反向过程时,状态转移步数必须与前向过程一致。

DDIM如何减少DDPM反向过程步数

在上一节中,我们说明了反向过程的马尔可夫状态与前向过程不需要一致,这表明 q ( x ^ t − 1 ∣ x ^ t ) q(\hat x_{t-1}|\hat x_{t}) q(x^t1x^t)的概率密度函数有多种。找到合适的概率密度函数,我们即可减少反向过程的迭代步数,同时保持生成图像的质量,这便是DDIM的出发点。以下的推导中,我们将用 x t 、 x t − 1 x_t、x_{t-1} xtxt1来表示反向过程的马尔可夫状态。

本章节的所有符号定义与深度学习(生成式模型)——DDPM:denoising diffusion probabilistic models一致

为了书写方便,除非特殊提及,在以下的所有推导中,所有的 x x x ϵ \epsilon ϵ符号都表示随机变量,而不是一个样本。

在DDPM的前向过程里有
x t − 1 = α ˉ t x 0 + 1 − α ˉ t ϵ t − 1 (2.0) \begin{aligned} x_{t-1}&=\sqrt{\bar \alpha_t}x_0+\sqrt{1-\bar\alpha_t}\epsilon_{t-1}\tag{2.0} \end{aligned} xt1=αˉt x0+1αˉt ϵt1(2.0)
已知两个均值为0的高斯分布相加具备以下性质

N ( 0 , δ 1 2 ) + N ( 0 , δ 2 2 ) = N ( 0 , δ 1 2 + δ 2 2 ) \mathcal N(0,\delta_1^2)+\mathcal N(0,\delta_2^2)=\mathcal N(0,\delta_1^2+\delta_2^2) N(0,δ12)+N(0,δ22)=N(0,δ12+δ22)

依据重参数化技巧,已知
1 − α ˉ t − δ t 2 ϵ t ∼ N ( 0 , 1 − α ˉ t − δ t 2 ) δ t ϵ ∼ N ( 0 , δ t 2 ) 1 − α ˉ ϵ t − 1 ∼ N ( 0 , 1 − α ˉ t − 1 ) \begin{aligned} \sqrt{1-\bar\alpha_{t}-\delta_t^2}\epsilon_{t}&\sim \mathcal N(0,1-\bar\alpha_{t}-\delta_t^2)\\ \delta_t\epsilon&\sim \mathcal N(0,\delta_t^2)\\ \sqrt{1-\bar\alpha}\epsilon_{t-1}&\sim \mathcal N(0,1-\bar \alpha_{t-1}) \end{aligned} 1αˉtδt2 ϵtδtϵ1αˉ ϵt1N(0,1αˉtδt2)N(0,δt2)N(0,1αˉt1)
则有
x t − 1 = α ˉ t − 1 x 0 + 1 − α ˉ t ϵ t − 1 = α ˉ t − 1 x 0 + 1 − α ˉ t − δ t 2 ϵ t + δ t ϵ = α ˉ t − 1 x 0 + 1 − α ˉ t − δ t 2 x t − α ˉ t x 0 1 − α ˉ t + δ t ϵ (2.1) \begin{aligned} x_{t-1}&=\sqrt{\bar \alpha_{t-1}}x_0+\sqrt{1-\bar\alpha_t}\epsilon_{t-1}\\ &=\sqrt{\bar \alpha_{t-1}}x_0+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\epsilon_{t}+\delta_t\epsilon\\ &=\sqrt{\bar \alpha_{t-1}}x_0+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\frac{x_t-\sqrt{\bar \alpha_t}x_0}{\sqrt{1-\bar\alpha_t}}+\delta_t\epsilon \end{aligned}\tag{2.1} xt1=αˉt1 x0+1αˉt ϵt1=αˉt1 x0+1αˉtδt2 ϵt+δtϵ=αˉt1 x0+1αˉtδt2 1αˉt xtαˉt x0+δtϵ(2.1)

依据重参数化公式,式2.1可表征为
q ( x t − 1 ∣ x t ) = q ( x t − 1 ∣ x t , x 0 ) = N ( x t − 1 ; α ˉ t − 1 x 0 + 1 − α ˉ t − δ t 2 x t − α ˉ t x 0 1 − α ˉ t , δ t 2 I ) (2.2) \begin{aligned} q(x_{t-1}|x_{t})&=q(x_{t-1}|x_t,x_0)\\ &=\mathcal N(x_{t-1};\sqrt{\bar \alpha_{t-1}}x_0+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\frac{x_t-\sqrt{\bar \alpha_t}x_0}{\sqrt{1-\bar\alpha_t}},\delta_t^2\mathcal I)\tag{2.2} \end{aligned} q(xt1xt)=q(xt1xt,x0)=N(xt1;αˉt1 x0+1αˉtδt2 1αˉt xtαˉt x0,δt2I)(2.2)
注意式2.2的推导过程绕过了贝叶斯公式,而且没有指定反向过程的状态转移图,因此式2.1是一个反向过程的概率密度函数族,不同的 δ t \delta_t δt表示不同的概率密度函数,对应反向过程不同的马尔可夫状态转移链。

结合式2.0,式2.2可进一步变化为
q ( x t − 1 ∣ x t ) = q ( x t − 1 ∣ x t , x 0 ) = N ( x t − 1 ; α ˉ t − 1 x t − 1 − α ˉ t ϵ t α ˉ t + 1 − α ˉ t − δ t 2 ϵ t , δ t 2 I ) (2.3) \begin{aligned} q(x_{t-1}|x_t)&=q(x_{t-1}|x_t,x_0)\\ &=N(x_{t-1};\sqrt{\bar \alpha_{t-1}}\frac{x_t-\sqrt{1-\bar \alpha_t}\epsilon_t}{\sqrt{\bar\alpha_t}}+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\epsilon_t,\delta_t^2\mathcal I)\tag{2.3} \end{aligned} q(xt1xt)=q(xt1xt,x0)=N(xt1;αˉt1 αˉt xt1αˉt ϵt+1αˉtδt2 ϵt,δt2I)(2.3)

DDIM的优化目标

由于DDIM与DDPM一样,前向过程与反向过程均为马尔科夫链,因此优化目标也一致。从上一篇博客,我们可知DDPM的优化目标为
L = ∑ t = 2 T D K L ( q ( x t − 1 ∣ x t , x 0 ) ∣ ∣ p θ ( x t − 1 ∣ x t ) ) = ∑ t = 2 T ( 1 2 ( n + 1 δ t 2 ∣ ∣ μ t − μ θ ∣ ∣ 2 − n + l o g 1 ) = ∑ t = 2 T ( 1 2 δ t 2 ∣ ∣ μ t − μ θ ∣ ∣ 2 ) \begin{aligned} L&=\sum_{t=2}^TD_{KL}(q(x_{t-1}|x_t,x_0)||p_\theta(x_{t-1}|x_t))\\ &=\sum_{t=2}^T(\frac{1}{2}(n+\frac{1}{\delta_t^2}||\mu_t-\mu_\theta||^2-n+log1)\\ &=\sum_{t=2}^T(\frac{1}{2\delta_t^2}||\mu_t-\mu_\theta||^2)\\ \end{aligned} L=t=2TDKL(q(xt1xt,x0)∣∣pθ(xt1xt))=t=2T(21(n+δt21∣∣μtμθ2n+log1)=t=2T(2δt21∣∣μtμθ2)

设网络预测的噪声为 ϵ θ ( x t ) \epsilon_\theta(x_t) ϵθ(xt),则DDIM的优化目标为:
L = ∑ t = 2 T ( 1 2 δ t 2 ∣ ∣ μ t − μ θ ∣ ∣ 2 ) = ∑ t = 2 T ( 1 2 δ 2 ∣ ∣ α ˉ t − 1 x 0 + 1 − α ˉ t − δ t 2 ϵ t − ( α ˉ t − 1 x 0 + 1 − α ˉ t − δ t 2 ϵ θ ( x t ) ) ∣ ∣ 2 ) = ∑ t = 2 T ( 1 − α ˉ t − δ t 2 2 δ t 2 ∣ ∣ ϵ t − ϵ θ ( x t ) ∣ ∣ 2 ) \begin{aligned} L&=\sum_{t=2}^T(\frac{1}{2\delta_t^2}||\mu_t-\mu_\theta||^2)\\ &=\sum_{t=2}^T(\frac{1}{2\delta^2}||\sqrt{\bar \alpha_{t-1}}x_0+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\epsilon_t-(\sqrt{\bar \alpha_{t-1}}x_0+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\epsilon_\theta(x_t))||^2)\\ &=\sum_{t=2}^T(\frac{1-\bar\alpha_t-\delta_t^2}{2\delta_t^2}||\epsilon_t-\epsilon_{\theta}(x_t)||^2) \end{aligned} L=t=2T(2δt21∣∣μtμθ2)=t=2T(2δ21∣∣αˉt1 x0+1αˉtδt2 ϵt(αˉt1 x0+1αˉtδt2 ϵθ(xt))2)=t=2T(2δt21αˉtδt2∣∣ϵtϵθ(xt)2)

结合上式以及坐标下降法,可得DDIM最终优化目标 L L L
L = ∣ ∣ ϵ t − ϵ θ ( α ˉ t x 0 + 1 − α ˉ t ϵ t ) ∣ ∣ 2 L=||\epsilon_t-\epsilon_\theta(\sqrt{\bar \alpha_t}x_0+\sqrt{1-\bar\alpha_t}\epsilon_t)||^2 L=∣∣ϵtϵθ(αˉt x0+1αˉt ϵt)2

与DDPM一致

DDIM的训练与测试

DDIM的训练过程与DDPM一致,反向过程的采样公式变为
x t − 1 = α ˉ t − 1 x t − 1 − α ˉ t ϵ θ ( x t ) α ˉ t + 1 − α ˉ t − δ t 2 ϵ θ ( x t ) + δ t ϵ (4.0) x_{t-1}=\sqrt{\bar \alpha_{t-1}}\frac{x_t-\sqrt{1-\bar \alpha_t}\epsilon_\theta(x_t)}{\sqrt{\bar\alpha_t}}+\sqrt{1-\bar\alpha_{t}-\delta_t^2}\epsilon_\theta(x_t)+\delta_t\epsilon\tag{4.0} xt1=αˉt1 αˉt xt1αˉt ϵθ(xt)+1αˉtδt2 ϵθ(xt)+δtϵ(4.0)

其中 ϵ \epsilon ϵ从标准正态分布中采样得到, δ t \delta_t δt为超参数,其取值为

δ t = η ( 1 − α ˉ t − 1 ) / ( 1 − α ˉ t ) 1 − α ˉ t / α ˉ t − 1 \delta_t=\eta\sqrt{(1-\bar\alpha_{t-1})/(1-\bar\alpha_{t})}\sqrt{1-\bar\alpha_t/\bar\alpha_{t-1}} δt=η(1αˉt1)/(1αˉt) 1αˉt/αˉt1

特别的,当 η = 1 \eta=1 η=1时,DDIM的反向过程与DDPM一致。当 η = 0 \eta=0 η=0时,式4.0的 ϵ \epsilon ϵ将被去掉,从而不具备随机性。即反向过程步数固定情况下,从一个噪声生成的图片将是确定,DDIM一般将 η \eta η取值设为0。

具体的实验结果可见下图:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110360.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法通关村第四关-黄金挑战栈的经典问题

括号匹配问题 描述 : 给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有…

ZYNQ连载01-ZYNQ介绍

ZYNQ连载01-ZYNQ介绍 1. ZYNQ 参考文档:《ug585-zynq-7000-trm.pdf》 ZYNQ分为PS和PL两大部分,PS即ARM,PL即FPGA,PL作为PS的外设。 2. 方案 ZYNQ7020为双核A9架构,多核处理器常用的运行模式为AMP(非对称多处理)和…

Flume 快速入门【概述、安装、拦截器】

文章目录 什么是 Flume?Flume 组成Flume 安装Flume 配置任务文件应用示例启动 Flume 采集任务 Flume 拦截器编写 Flume 拦截器拦截器应用 什么是 Flume? Flume 是一个开源的数据采集工具,最初由 Apache 软件基金会开发和维护。它的主要目的是…

9、电路综合-基于简化实频的任意幅频响应的微带电路设计

9、电路综合-基于简化实频的任意幅频响应的微带电路设计 网络综合和简化实频理论学习概述中的1-8介绍了SRFT的一些基本概念和实验方法,终于走到了SRFT的究极用途,给定任意响应直接综合出微带电路。 1、任意幅频响应的微带电路设计用途 我们演示了采用…

Python皮卡丘

系列文章 序号文章目录直达链接1浪漫520表白代码https://want595.blog.csdn.net/article/details/1306668812满屏表白代码https://want595.blog.csdn.net/article/details/1297945183跳动的爱心https://want595.blog.csdn.net/article/details/1295031234漂浮爱心https://want…

[C++]命名空间等——喵喵要吃C嘎嘎

希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,大大会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…

Python爬虫实战(六)——使用代理IP批量下载高清小姐姐图片(附上完整源码)

文章目录 一、爬取目标二、实现效果三、准备工作四、代理IP4.1 代理IP是什么?4.2 代理IP的好处?4.3 获取代理IP4.4 Python获取代理IP 五、代理实战5.1 导入模块5.2 设置翻页5.3 获取图片链接5.4 下载图片5.5 调用主函数5.6 完整源码5.7 免费代理不够用怎…

C++ 自引用指针this(整理)

使用例子&#xff1a; #include <iostream> #include <Windows.h> using namespace std; class A { public:A(int x1){x x1;}void disp(){cout<<"this"<<this<<" when x"<<this->x<<endl;} private:int x;…

【工具使用】NPS内网穿透工具介绍

文章目录 前言一、内网穿透二、NPS概述三、NPS原理四、NPS服务器搭建(一)云服务器配置 五、NPS内网穿透演示(一)演示案例一(二)演示案例二 六、NPS内网穿透检测建议(一)流量监控(二)流量协议分析(三)网络行为异常检测 七、NPS内网穿透防范建议(一)阻止或隔离流量(二)更新和强化…

14技术太卷我学APEX-RESTful服务全自动Autorest

Oracle REST 数据服务 (ORDS) 的 AutoREST 功能&#xff0c;该功能允许您将表和视图等自动公开为 RESTful Web 服务。这个太好可不用自己费劲巴拉的定义RESTful数据服务了。 1 先准备测试数据表 登录APEX现在开发平台 [https://apex.oracle.com/pls/apex/r/apex/workspace-si…

Unity UniTask【安装】

窗口→包管理器&#xff0c;输入GitURL&#xff1a;https://github.com/Cysharp/UniTask.git?pathsrc/UniTask/Assets/Plugins/UniTask 如果上述方式不行&#xff0c;那就直接导入UniTask包&#xff0c;下载地址&#xff1a;Unity3D异步神器UniTask2.4.1包资源-CSDN文库

DBA笔记(1)

目录 1、rpm yum 命令的使用&#xff0c;参数的含义 rpm命令&#xff1a; yum命令&#xff1a; 2、上传镜像至虚拟机搭建本地yum源 3、chown chomd 命令每一个参数的含义 chown命令&#xff1a; chmod命令&#xff1a; 4、fdisk partd 硬盘分区命令用法 fdisk命令&am…

Seata入门系列【15】@GlobalLock注解使用场景及源码分析

1 前言 在Seata 中提供了一个全局锁注解GlobalLock&#xff0c;字面意思是全局锁&#xff0c;搜索相关文档&#xff0c;发现资料很少&#xff0c;所以分析下它的应用场景和基本原理&#xff0c;首先看下源码中对该注解的说明&#xff1a; // 声明事务仅在单个本地RM中执行 //…

【错误解决方案】ModuleNotFoundError: No module named ‘ngboost‘

1. 错误提示 在python程序&#xff0c;尝试导入一个名为ngboost的模块&#xff0c;但Python提示找不到这个模块。 错误提示&#xff1a;ModuleNotFoundError: No module named ‘ngboost‘ 2. 解决方案 出现上述问题&#xff0c;可能是因为你还没有安装这个模块&#xff0c;…

探索环幕投影系统在沉浸式展厅设计中的应用优势

伴随着数字化时代的快速发展&#xff0c;以往的静态展示方式已经无法满足人们对内容展览展示的需求&#xff0c;因此需要利用先进的多媒体互动技术&#xff0c;来提升观众的参观体验&#xff0c;而其中环幕投影系统便是用于建设沉浸式空间的主流技术之一&#xff0c;其被应用在…

【Linux】Linux的安装以及常见命令

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Linux的相关操作吧 一.Linux的安装 1.创建虚拟机 2.选择linux 3.配置虚拟机 4.开启虚拟机 默认回车即可 5.安装linux 5.登录账户 6.解决网络问题 ①先查看一下…

宇信科技:强势行业加速融入AIGC,同时做深做细

【科技明说 &#xff5c; 重磅专题】 大家可能没有想到&#xff0c;一向对外低调行事的宇信科技&#xff0c;在AIGC方面2023年就已经训练出了适配金融场景的垂直模型&#xff0c;并应用到了各产品线上&#xff0c;同时结合通用大模型预研了宇信金融系统编程大模型。宇信金融系…

IDEA优雅自动生成类注释和快捷键生成方法注释

生成类注释 Preferences->Editor->File and Code Templates-> Includes ->File Header 注释模板&#xff1a; /*** Classname ${NAME}* Description ${description}* Date ${DATE} ${TIME}* Created by ZouLiPing*/生成方法和字段注释 查看IDEA自动配置java快捷…

Qwt QwtScaleDraw自定义坐标轴

1.概述 QwtScaleDraw 是 Qt 绘图库 Qwt 中的一个类&#xff0c;用于绘制坐标轴刻度线和刻度标签。它提供了一些方法和属性来设置刻度线和标签的样式、布局和对齐方式。 以下是类继承关系&#xff1a; 2.常用方法 标签相关方法&#xff1a; setLabelRotation(double angle)&…