基于纵横交叉算法的无人机航迹规划-附代码

基于纵横交叉算法的无人机航迹规划

文章目录

  • 基于纵横交叉算法的无人机航迹规划
    • 1.纵横交叉搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用纵横交叉算法来优化无人机航迹规划。

1.纵横交叉搜索算法

纵横交叉算法原理请参考:https://blog.csdn.net/u011835903/article/details/109514424

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得纵横交叉搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用纵横交叉算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,纵横交叉算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110033.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vscode 通过ssh 连接虚拟机vmware(ubuntu)

1.网络连接是否ping的通(ubuntu虚拟机使用的是net 连接方式) 2.配置环境 ubuntu 需要安装ssh server 服务 (1): 安装(Ubuntu安装ssh server) apt-get install openssh-server 检查是否ssh server 是否启动…

PostMan 之 Mock 接口测试

在测试的时候经常会碰到后端开发工程师的接口还没有开发完成,但是测试任务已经分配过来。没有接口怎么测试呢? 测试人员可以通过 mock server 自己去造一个接口来访问。mock server 可用于模拟真实的接口。收到请求时,它会根据配置返回对应的…

图解Kafka高性能之谜(五)

高性能的多分区、冗余副本集群架构 高性能网络模型NIO 简单架构设计: 详细架构设计: 高性能的磁盘写技术 高性能的消息查找设计 索引文件定位使用跳表的设计 偏移量定位消息时使用稀疏索引: 高响应的磁盘拷贝技术 kafka采用sendFile()的…

Linux:KVM虚拟化

本章操作基于centos7系统 简介 KVM是Kernel Virtual Machine的简写,目前Redhat只支持在64位的Rhel5.4以上的系统运行KVM,同时硬件需要支持VT技术。KVM的前身是QEMU,在2008年被redhat公司收购并获得了一项hypervisor技术,不过redh…

一文浅析Instagram网红经济为什么远远超出其他社媒平台

根据数据显示,网红营销市场规模在短短五年时间内从2016年的17亿美元增长至2022年的164亿美元,累计增速超过了712%。未来,有专家预计该市场预计将进一步增长,将在2023年突破210亿美元。这种惊人的增长趋势源于社交媒体的快速发展以…

SpringBoot整合Gateway 的Demo(附源码)

源码&#xff0c;可直接下载 Gateway模块 Gateway 的父pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:sc…

【图像分类】基于计算机视觉的坑洼道路检测和识别(ResNet网络,附代码和数据集)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 本篇博文,我们将使用PyTorch深度学习框架搭建ResNet实现钢轨缺陷识别,附完整的项目代码和数据集,可以说是全网…

基于单片机的智能清洁小车设计—控制系统设计

收藏和点赞&#xff0c;您的关注是我创作的动力 文章目录 概要 一、研究的主要内容和目标二、总体方案设计2.1智能清洁小车的硬件系统组成2.2智能清洁小车的硬件结构图 三、 小车结构设计5.1基本布局和功能分析5.2小车二维及三维图小车三维图&#xff1a; 四、 原理图程序 五、…

JAVA反射机制及动态代理

反射机制 反射机制是什么 1、Java反射机制的核心是在程序运行时动态加载类并获取类的详细信息&#xff0c;从而操作类或对象的属性和方法。本质是JVM得到class对象之后&#xff0c; 再通过class对象进行反编译&#xff0c;从而获取对象的各种信息。 2、Java属于先编译再运行的…

gurobi 安装/license激活 记录

前言&#xff1a;花了好久&#xff0c;被嫌弃惹ww&#xff0c;记录一下踩过的坑 至于为何没安装gurobi也能跑一段时间&#xff0c;直到显示需要license激活&#xff0c;还是未解之迷&#xff0c;需要教教。 首先这是官方给的gurobi license激活教程 我们一步步来复现吧&#…

Go命令行参数操作:os.Args、flag包

Go命令行参数操作&#xff1a;os.Args、flag包 最近在写项目时&#xff0c;需要用到命令行传入的参数&#xff0c;正好借此机会整理一下。 1 os.Args&#xff1a;程序运行时&#xff0c;携带的参数&#xff08;包含exe本身&#xff09; package mainimport ("fmt"&q…

cola架构:有限状态机(FSM)源码分析

目录 0. cola状态机简述 1.cola状态机使用实例 2.cola状态机源码解析 2.1 语义模型源码 2.1.1 Condition和Action接口 2.1.2 State 2.1.3 Transition接口 2.1.4 StateMachine接口 2.2 Builder模式 2.2.1 StateMachine Builder模式 2.2.2 ExternalTransitionBuilder-…

Spring中Bean的完整生命周期!(Bean实例化的流程,Spring后处理器,循环依赖解释及解决方法)附案例演示

Bean实例化的基本流程 加载xml配置文件&#xff0c;解析获取配置中的每个的信息&#xff0c;封装成一个个的BeanDefinition对象将BeanDefinition存储在一个名为beanDefinitionMap的Map<String,BeanDefinition>中ApplicationContext底层遍历beanDefinitionMap&#xff0c…

解决计算机msvcp120.dll文件丢失的5种方法,亲测有效

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“msvcp120.dll丢失”。这个错误提示可能会给我们带来很大的困扰&#xff0c;影响我们的正常使用。本文将详细介绍msvcp120.dll丢失的原因、解决方法以及预防措施&#xff0c;帮助大家更好地…

3D LUT 滤镜 shader 源码分析

最近在做滤镜相关的渲染学习&#xff0c;目前大部分 LUT 滤镜代码实现都是参考由 GPUImage 提供的 LookupFilter 的逻辑&#xff0c;整个代码实现不多。参考网上的博文也有各种解释&#xff0c;参考了大量博文之后终于理解了&#xff0c;所以自己重新整理了一份&#xff0c;方便…

selenium工作原理和反爬分析

一、 Selenium Selenium是最广泛使用的开源Web UI(用户界面)自动化测试套件之一&#xff0c;支持并行测试执行。Selenium通过使用特定于每种语言的驱动程序支持各种编程语言。Selenium支持的语言包括C#&#xff0c;Java&#xff0c;Perl&#xff0c;PHP&#xff0c;Python和Ru…

Linux——Linux权限

Linux权限 前言一、shell命令以及运行原理二、Linux权限的概念Linux权限管理文件访问者的分类&#xff08;人&#xff09;文件类型和访问权限&#xff08;事物属性&#xff09;文件权限值的表示方法文件访问权限的相关设置方法 file指令目录的权限粘滞位 总结 前言 linux的学习…

基本微信小程序的体检预约小程序

项目介绍 我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;体检预约系统小程序被用户普遍使用&#xff0c;为方便用户…

LabVIEW开发基于图像处理的车牌检测系统

LabVIEW开发基于图像处理的车牌检测系统 自动车牌识别的一般步骤是图像采集、去除噪声的预处理、车牌定位、字符分割和字符识别。结果主要取决于所采集图像的质量。在不同照明条件下获得的图像具有不同的结果。在要使用的预处理技术中&#xff0c;必须将彩色图像转换为灰度&am…

【PyQt学习篇 · ⑧】:QWidget - 窗口特定操作

文章目录 图标标题不透明度窗口状态最大化和最小化窗口标志案例 图标 setWindowIcon(QIcon("resource/header_icon.png"))&#xff1a;该函数用于设置QWidget的窗口图标。可以为窗口设置一个图标&#xff0c;以显示在窗口标题栏、任务栏或窗口管理器中。 windowIcon…