nodejs+vue食力派网上订餐系统-计算机毕业设计

 采用当前流行的B/S模式以及3层架构的设计思想通过 技术来开发此系统的目的是建立一个配合网络环境的食力派网上订餐系统,这样可以有效地解决食力派网上订餐管理信息混乱的局面。
本设计旨在提高顾客就餐效率、优化餐厅管理、提高订单准确性和客户的满意度。本系统采用  框架及其第三方库和第三方工具来进行开发。 然后,设计框架并根据设计的框架编写代码以实现系统的各个功能模块。最后,对初步完成的系统进行测试,主要是功能测试、单元测试和性能测试。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。
 
 
  
前端技术:nodejs+vue+elementui,
Express 框架于Node运行环境的Web框架,
语言 node.js
框架:Express
前端:Vue.js
数据库:mysql
数据库工具:Navicat
开发软件:VScode
视图层其实质就是vue页面,通过编写vue页面从而展示在浏览器中,编写完成的vue页面要能够和控制器类进行交互,从而使得用户在点击网页进行操作时能够正常。

代码结构讲解
 1、 node_modules文件夹(有npn install产生)
    这文件夹就是在创建完项目后,cd到项目目录执行npm install后生成的文件夹,下载了项目需要的依赖项。
2、package.json文件
     此文件是项目的配置文件(可定义应用程序名,版本,依赖项等等)。node_modules文件夹下的依赖项是从哪里知道的呢?原因就是项目根目录下的这个package.json文件,执行npm install时会去找此文件中的dependencies,并安装指定的依赖项。
3、public文件夹(包含images、javascripts、stylesheets)
      这个文件夹做过Web开发的应该一看就知道,为了存放图片、脚本、样式等文件的。
4、routes文件夹
      用于存放路由文件。
5、views文件夹
      存放视图。
 
 在各学校的教学过程中,食力派网上订餐系统是一项非常重要的事情。该方案分为管理员功能模块,商家功能模块以及用户前后功能模块三部分。开发前期根据用户的实际情况出发,对系统的需求进行详细的分析,然后进行系统的整体设计,最后通过测试使得系统设计的更加完整,可以实现系统中所有的功能
 本文首先介绍了食力派网上订餐系统的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,根据需求分析制定模块并设计数据库结构,再根据系统总体功能模块的设计绘制系统的功能模块图,流程图以及E-R图。随着计算机多媒体技术的发展和网络的普及。
 
 
 
目 录
摘 要 I
ABSTRACT II
目 录 II
第1章 绪论 1
1.1背景及意义 1
1.2 国内外研究概况 1
1.3 研究的内容 1
第2章 相关技术 3
2.1 nodejs简介 4
2.2 express框架介绍 6
2.4 MySQL数据库 4
第3章 系统分析 5
3.1 需求分析 5
3.2 系统可行性分析 5
3.2.1技术可行性:技术背景 5
3.2.2经济可行性 6
3.2.3操作可行性: 6
3.3 项目设计目标与原则 6
3.4系统流程分析 7
3.4.1操作流程 7
3.4.2添加信息流程 8
3.4.3删除信息流程 9
第4章 系统设计 11
4.1 系统体系结构 11
4.2开发流程设计系统 12
4.3 数据库设计原则 13
4.4 数据表 15
第5章 系统详细设计 19
5.1管理员功能模块 20
5.2用户功能模块 23
5.3前台功能模块 19
第6章 系统测试 25
6.1系统测试的目的 25
6.2系统测试方法 25
6.3功能测试 26
结 论 28
致 谢 29
参考文献 30

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/109294.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GLoRE:大型语言模型的逻辑推理能力探究

最新研究揭示,尽管大语言模型LLMs在语言理解上表现出色,但在逻辑推理方面仍有待提高。为此,研究者们推出了GLoRE,一个全新的逻辑推理评估基准,包含12个数据集,覆盖三大任务类型。 实验对比发现,…

后门程序分析1

临时补充一个内容,这是一个后门程序,通过IDA分析,之后把里面收集的信息点全部整理出来(包括:反虚拟机,系统信息等等)pass:guet 用IDA打开先看看主函数的样子 查阅一些这些API InternetOpenA&…

【机器学习合集】模型设计之网络宽度和深度设计 ->(个人学习记录笔记)

文章目录 网络宽度和深度设计1. 什么是网络深度1.1 为什么需要更深的模型浅层学习的缺陷深度网络更好拟合特征学习更加简单 2. 基于深度的模型设计2.1 AlexNet2.2 AlexNet工程技巧2.3 VGGNet 3. 什么是网络宽度3.1 为什么需要足够的宽度 4. 基于宽度模型的设计4.1 经典模型的宽…

EM算法解析+代码

大纲 数学基础:凸凹函数,Jensen不等式,MLEEM算法公式,收敛性HMM高斯混合模型 一、数学基础 1. 凸函数 通常在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值&#xff…

初学编程入门基础教学视频,中文编程开发语言工具箱之豪华编辑构件,免费版中文编程软件下载

初学编程入门基础教学视频,中文编程开发语言工具箱之豪华编辑构件,免费版中文编程软件下载 构件的其中一个属性、方法,查找内容,替换内容。 构件工具箱非常丰富,其中该构件在 文本件构件板菜单下。 编程系统化课程总目…

web - 前段三剑客

目录 前言 一. HTML 常用标签演示 图片标签 ​编辑 表格标签(重点) ​编辑 表单标签 (重点) 布局标签 其余标签 二. CSS 2.1 . css的三种引入方式 2.2 . 三大选择器 2.3 . css样式 - 浮动 2.4 . css样式 - 定位 1.static 2.absolute(绝对位置) 3.relavite(相…

【设计模式】第13节:结构型模式之“享元模式”

一、简介 所谓“享元”,顾名思义就是被共享的单元。享元模式的意图是复用对象,节省内存,前提是享元对象是不可变对象。 实现:通过工厂模式,在工厂类中,通过一个Map或者List来缓存已经创建好的享元对象&am…

LeetCode 415 字符串相加 简单

题目 - 点击直达 1. 415 字符串相加 简单1. 题目详情1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 1. 415 字符串相加 简单 1. 题目详情 给定两个字符串形式的非负整数 num1 和num2 ,计算它们的和并同样以字符串形式返回。…

LeetCode题:88合并两个有序数组,283移动零,448找到所有数组中消失的数字

目录 88合并两个有序数组 1、题目要求 2、解题思路 (1)、暴力解法: (2)、双指针,使用第三数组的解法: 3、代码展示 (1)、暴力解法: (2&am…

画时钟(turtle库)

思路: 总体来看,分为两个部分:固定的表盘,和不断刷新的指针(和时间显示) 固定的表盘 我的表盘长这个样子: 分为三个部分:60个dot点(分、秒),12条…

漏洞复现--用友 畅捷通T+ .net反序列化RCE

免责声明: 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

树莓派基金会近日发布了新版基于 Debian 的树莓派操作系统

导读树莓派基金会(Raspberry Pi Foundation)近日发布了新版基于 Debian 的树莓派操作系统(Raspberry Pi OS),为树莓派单板电脑带来了新的书虫基础和一些重大变化。 新版 Raspberry Pi OS 的最大变化是它现在基于最新的…

竞赛选题 深度学习图像修复算法 - opencv python 机器视觉

文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步:将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…

《数字图像处理-OpenCV/Python》连载(33)使用掩模图像控制处理区域

**本书京东优惠购书链接:https://item.jd.com/14098452.html** **本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html** 第 5 章 图像的算术运算 在OpenCV中,图像是以Numpy数组格式存储的,图像的算术运…

大数据Flink(一百零三):SQL 表值聚合函数(Table Aggregate Function)

文章目录 SQL 表值聚合函数(Table Aggregate Function) SQL 表值聚合函数(Table Aggregate Function) Python UDTAF,即 Python TableAggregateFunction。Python UDTAF 用来针对一组数据进行聚合运算,比如同一个 window 下的多条数据、或者同一个 key 下的多条数据等,与…

grafana InfluxDB returned error: error reading influxDB 400错误解决

问题: 如图提示错误解决 确认自己的docker容器是否配置了以下3个字段 DOCKER_INFLUXDB_INIT_USERNAMExxx DOCKER_INFLUXDB_INIT_PASSWORDyyy DOCKER_INFLUXDB_INIT_ADMIN_TOKENzzz 如果有,在grafana中需要添加header配置Header: Authorization , Value…

docker应用部署---nginx部署的配置

1. 搜索nginx镜像 docker search nginx2. 拉取nginx镜像 docker pull nginx3. 创建容器,设置端口映射、目录映射 # 在/root目录下创建nginx目录用于存储nginx数据信息 mkdir ~/nginx cd ~/nginx mkdir conf cd conf# 在~/nginx/conf/下创建nginx.conf文件,粘贴下…

VScode 调试 linux内核

VScode 调试 linux内核 这里调试的 linux 内核是通过 LinuxSD卡(rootfs)运行的内核 gdb 命令行调试 编辑 /home/tyustli/.gdbinit 文件,参考 【GDB】 .gdbinit 文件 set auto-load safe-path /home/tyustli/code/open_source/kernel/linux-6.5.7/.gdbinit在 lin…

C笔记:引用调用,通过指针传递

代码 #include<stdio.h> int max1(int num1,int num2) {if(num1 < num2){num1 num2;}else{num2 num1;} } int max2(int *num1,int *num2) {if(num1 < num2){*num1 *num2; // 把 num2 赋值给 num1 }else{*num2 *num1;} } int main() {int num1 0,num2 -2;int…

【AD9361 数字接口CMOS LVDSSPI】D 串行数据之SPI

【AD9361 数字接口CMOS &LVDS&SPI】D部分 接续 【AD9361 数字接口CMOS &LVDS&SPI】A 并行数据之CMOS 串行外设接口&#xff08;SPI&#xff09; SPI总线为AD9361的所有数字控制提供机制。每个SPI寄存器的宽度为8位&#xff0c;每个寄存器包含控制位、状态监视…