2023年第四届MathorCup大数据竞赛(A题)|坑洼道路检测和识别|数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2021年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。

希望这些想法对大家的做题有一定的启发和借鉴意义。
让我们来看看MathorCup的A题!
在这里插入图片描述

问题重述:

问题1:图像特征提取和模型建立

题目要求建立一个高识别准确度、快速的模型,能够识别道路图像是正常的还是坑洼的。具体步骤包括:

  1. 解压data.zip,准备训练数据。
  2. 对图像进行预处理,如调整尺寸和数据增强。
  3. 使用深度学习模型提取图像特征。
  4. 构建一个分类模型,将特征转化为更容易分类的表示形式。
  5. 使用训练数据训练模型。

问题2:模型评估

题目要求对模型进行评估,从不同维度考察其性能。评估指标可能包括准确率、召回率、精确度、F1分数等,以及绘制ROC曲线和AUC。

问题3:测试集识别
题目求使用已经训练好的模型对未标记的测试数据集(在竞赛结束前48小时公布下载链接)中的图像进行坑洼识别。将识别结果以特定格式填写到test result.csv中,并将该文件提交以供评估。

问题一

问题一的具体建模思路通常基于深度学习方法,在这里我们使用卷积神经网络(CNN)。

  1. 数据准备

    • 将数据集划分为训练集和验证集,以用于模型训练和评估。
  2. 图像预处理

    • 调整图像大小为固定尺寸,如 224 × 224 224\times224 224×224
    • 数据增强:对训练图像进行数据增强,包括旋转、翻转、缩放和亮度调整等。
  3. 特征提取

    • 使用一个预训练的卷积神经网络(如ResNet、VGG、或MobileNet)来提取图像特征。这些模型通常包含卷积层,用于捕获图像的特征。
    • 在模型的前几层,特征图会被提取出来。
  4. 模型构建

    • 添加一个或多个全连接层,用于将提取的特征转换为最终的分类输出。
    • 使用sigmoid激活函数来输出一个0到1的值,表示道路是否坑洼。

模型的建立可以表示为以下公式:

给定一个输入图像 x x x,表示为一个 W × H × C W\times H\times C W×H×C的三维张量,其中 W W W H H H是图像的宽度和高度, C C C是通道数。卷积神经网络(CNN)将图像 x x x映射到一个输出标量 y y y,表示道路是否坑洼的概率。这个映射可以表示为:

y = σ ( f ( x ) ) y = \sigma(f(x)) y=σ(f(x))

其中:

  • f ( x ) f(x) f(x)表示卷积神经网络的前向传播过程,包括卷积、池化和全连接等层的组合,用于提取图像特征。
  • σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1 是sigmoid激活函数,将 z z z映射到0到1的范围内,表示概率。

模型的训练可以使用二元交叉熵(binary cross-entropy)损失函数来度量预测概率与实际标签之间的差异:

L ( y , y ^ ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) \mathcal{L}(y, \hat{y}) = -\left(y\log(\hat{y}) + (1 - y)\log(1 - \hat{y})\right) L(y,y^)=(ylog(y^)+(1y)log(1y^))

其中:

  • y y y 是实际标签(0表示坑洼,1表示正常道路)。
  • y ^ \hat{y} y^ 是模型的预测概率。

训练模型的目标是最小化损失函数 L \mathcal{L} L,以使预测尽可能接近实际标签。

二元交叉熵(Binary Cross-Entropy)是一种用于衡量二分类问题中模型预测与实际标签之间的差异的损失函数。它通常用于训练和评估二分类模型,例如判断一个样本属于两个类别中的哪一个。

这个损失函数的度量原理基于信息论的概念,特别是信息熵。以下是它的度量原理:

假设我们有一个二分类问题,其中样本的实际标签为 y y y,可以取0或1,而模型的预测概率为 y ^ \hat{y} y^,表示样本属于类别1的概率。

交叉熵损失的度量原理基于以下两种情况:

  1. 当实际标签 y = 1 y=1 y=1时,交叉熵损失为:

    − log ⁡ ( y ^ ) -\log(\hat{y}) log(y^)

    这表示模型预测样本属于类别1的概率越高,损失越小,反之则损失越大。这是因为实际标签为1时,我们希望模型的预测也接近1。

  2. 当实际标签 y = 0 y=0 y=0时,交叉熵损失为:

    − log ⁡ ( 1 − y ^ ) -\log(1 - \hat{y}) log(1y^)

    这表示模型预测样本属于类别0的概率越高,损失越小,反之则损失越大。这是因为实际标签为0时,我们希望模型的预测也接近0。

在训练过程中,我们会将所有样本的交叉熵损失加权求和,然后尝试最小化这个总损失。这意味着模型的目标是使其对于所有样本的预测与实际标签更加一致,以最小化总的交叉熵损失。

总的二元交叉熵损失可以表示为:

L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) \mathcal{L}(\hat{y}, y) = -\left(y\log(\hat{y}) + (1 - y)\log(1 - \hat{y})\right) L(y^,y)=(ylog(y^)+(1y)log(1y^))

其中, L ( y ^ , y ) \mathcal{L}(\hat{y}, y) L(y^,y)表示损失, y ^ \hat{y} y^表示模型的预测概率, y y y表示实际标签。最小化这个损失将使模型尽量接近实际标签的分布,以更好地进行二分类任务。

代码:

import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd

# 加载和预处理数据
def load_and_preprocess_data():
    # 你需要编写加载和预处理数据的代码,返回X和y
    # X是图像数据,y是标签(0表示坑洼,1表示正常道路)
    # 这里使用一个假设的示例,你需要根据实际数据进行适配
    X = np.random.rand(301, 224, 224, 3)  # 示例随机生成图像数据
    y = np.random.randint(2, size=301)  # 示例随机生成标签
    return {'images': X, 'labels': y}

# 构建深度学习模型
def build_model():
    model = keras.Sequential([
        keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
        keras.layers.MaxPooling2D((2, 2)),
        keras.layers.Conv2D(64, (3, 3), activation='relu'),
        keras.layers.MaxPooling2D((2, 2)),
        keras.layers.Flatten(),
        keras.layers.Dense(128, activation='relu'),
        keras.layers.Dense(1, activation='sigmoid')
    ])
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',  # 二元交叉熵损失
                  metrics=['accuracy'])
    return model

# 模型训练
def train_model(X_train, y_train, X_val, y_val):
    model = build_model()
    #见完整版代码

题目二

问题二的建模思路需要分为两个主要部分:模型训练和模型评估。

模型训练

  1. 数据加载与划分:首先,加载问题一中准备好的训练数据。将数据集划分为训练集( X train X_{\text{train}} Xtrain y train y_{\text{train}} ytrain)和验证集( X val X_{\text{val}} Xval y val y_{\text{val}} yval),通常采用交叉验证方法,以确保模型在不同数据子集上进行训练和评估。

  2. 模型选择:选择问题一中构建的深度学习模型,该模型已包含合适的网络结构和损失函数(二元交叉熵),用于道路坑洼的分类任务。

  3. 模型训练:使用训练集进行模型训练。迭代多个周期(epochs),使模型能够适应数据。训练过程中,模型会自动调整权重,以最小化损失函数。

  4. 超参数调优:根据需要,进行超参数调优,包括学习率、批处理大小等。这可以通过验证集上的性能来指导。你可以使用交叉验证技术来尝试不同的超参数组合。

  • 数据加载与划分:

X train , y train , X val , y val = train_test_split ( X , y , test_size = 0.2 , random_state = 42 ) X_{\text{train}}, y_{\text{train}}, X_{\text{val}}, y_{\text{val}}=\text{train\_test\_split}(X, y, \text{test\_size}=0.2,\text{random\_state}=42) Xtrain,ytrain,Xval,yval=train_test_split(X,y,test_size=0.2,random_state=42)

  • 模型选择:
    model = build_model ( ) \text{model} = \text{build\_model}() model=build_model()

  • 模型训练:

    model.fit ( X train , y train , epochs = 10 , validation_data = ( X val , y val ) \text{model.fit}(X_{\text{train}}, y_{\text{train}}, \text{epochs}=10, \text{validation\_data}=(X_{\text{val}}, y_{\text{val}}) model.fit(Xtrain,ytrain,epochs=10,validation_data=(Xval,yval)

模型评估

使用ROC曲线和AUC(Area Under the Curve)来评估模型的性能是一种常见的方法,特别适用于二分类问题。ROC曲线是一种用于可视化分类模型性能的工具,而AUC是ROC曲线下的面积,用于定量评估模型的性能。

1. 计算模型的ROC曲线

在评估模型之前,你需要使用验证集上的真正例率(True Positive Rate,召回率)和假正例率(False Positive Rate)来构建ROC曲线。这可以通过不同的分类阈值来实现。以下是ROC曲线的构建过程:

  • 为了计算ROC曲线,首先使用模型对验证集进行预测,获取每个样本的预测概率。

  • 使用不同的分类阈值(通常是0到1之间的值),将样本分为正类和负类。根据不同阈值,计算真正例率(TPR)和假正例率(FPR)。

  • 绘制TPR和FPR的曲线,即ROC曲线。

2. 计算AUC值

AUC(ROC曲线下的面积)用于量化ROC曲线的性能。AUC的值通常在0.5和1之间,越接近1表示模型性能越好。

  • 计算ROC曲线下的面积(AUC)。通常,你可以使用数值积分方法或库函数来计算AUC的值。

3. 评估模型

根据ROC曲线和AUC值进行模型评估。

  • AUC接近1表示模型具有良好的性能,可以很好地区分正类和负类样本。

  • ROC曲线越接近左上角(0,1),表示模型性能越好。

  • 如果AUC接近0.5,模型性能可能很差,类似于随机猜测。

  • 比较不同模型的AUC值,选择具有较高AUC值的模型。

  • 根据任务需求,可以根据不同的阈值来调整模型,以在召回率和精确度之间取得平衡。

import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# 加载和预处理数据(与问题一相同)
def load_and_preprocess_data():
    # 你需要编写加载和预处理数据的代码,返回X和y
    # X是图像数据,y是标签(0表示坑洼,1表示正常道路)
    # 这里使用一个假设的示例,你需要根据实际数据进行适配
    X = np.random.rand(301, 224, 224, 3)  # 示例随机生成图像数据
    y = np.random.randint(2, size=301)  # 示例随机生成标签
    return {'images': X, 'labels': y}

# 构建深度学习模型(与问题一相同)
def build_model():
    model = keras.Sequential([
        # 模型结构,与问题一相同
    ])
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',  # 二元交叉熵损失
                  metrics=['accuracy'])
    return model

# 模型训练(与问题一相同)
def train_model(X_train, y_train, X_val, y_val):
    model = build_model()
    model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val))
    return model

# 计算ROC曲线和AUC
def calculate_roc_auc(model, X_val, y_val):
    y_pred = model.predict(X_val)
    fpr, tpr, thresholds = roc_curve(y_val, y_pred)
    roc_auc = auc(fpr, tpr)
    return fpr, tpr, roc_auc

# 绘制ROC曲线
def plot_roc_curve(fpr, tpr, roc_auc):
    plt.figure()
    plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver Operating Characteristic')
    #见完整代码

问题三

问题三要求使用已训练的模型对测试集中的坑洼图像进行识别,并将识别结果保存在一个CSV文件中。以下是问题三的具体建模思路,:

模型应用

  1. 加载已训练模型:首先,加载问题一或问题二中训练好的模型。这个模型应该是能够识别道路坑洼的模型。

  2. 加载测试数据:加载问题一中提供的测试数据集(通常以图像的形式)。

  3. 图像预处理:对测试数据进行与训练数据相同的预处理,包括图像归一化、缩放等操作。

  4. 模型预测:使用加载的模型对测试数据进行预测,得到每张图像的分类结果(0表示坑洼,1表示正常道路)。

结果保存

  1. 保存识别结果:将图像文件名与对应的分类结果(0或1)保存在CSV文件中。这个文件将作为问题三的提交文件。

模型应用

  • 加载已训练模型:

model = load_trained_model ( ) \text{model} = \text{load\_trained\_model}() model=load_trained_model()

  • 加载测试数据:

    test_data = load_test_data ( ) \text{test\_data} = \text{load\_test\_data}() test_data=load_test_data()

  • 图像预处理:

    preprocessed_test_data = preprocess_images ( test_data ) \text{preprocessed\_test\_data} = \text{preprocess\_images}(\text{test\_data}) preprocessed_test_data=preprocess_images(test_data)

  • 模型预测:

    predictions = model.predict ( preprocessed_test_data ) \text{predictions} = \text{model.predict}(\text{preprocessed\_test\_data}) predictions=model.predict(preprocessed_test_data)

结果保存

  • 保存识别结果:

    save_results_to_csv ( test_data_file_names , predictions ) \text{save\_results\_to\_csv}(\text{test\_data\_file\_names}, \text{predictions}) save_results_to_csv(test_data_file_names,predictions)

import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras

# 加载已训练的模型
def load_trained_model(model_path):
    model = keras.models.load_model(model_path)
    return model

# 加载测试数据
def load_test_data(test_data_dir):
    # 你需要编写加载测试数据的代码,返回测试数据集
    # 这里使用一个假设的示例,你需要根据实际数据进行适配
    test_data = np.random.rand(1000, 224, 224, 3)  # 示例随机生成测试图像数据
    return test_data

# 图像预处理(与问题二相似)
def preprocess_images(images):
    # 你需要编写与问题二中相似的图像预处理代码
    # 包括图像归一化、缩放、通道处理等操作
    return preprocessed_images

# 模型预测
def predict_with_model(model, test_data):
    predictions = model.predict(test_data)
    # 假设模型输出概率,可以根据阈值将概率转换为类别(0或1)
    predicted_labels = (predictions >= 0.5).astype(int)
    return predicted_labels

# 保存识别结果到CSV文件
def save_results_to_csv(file_names, predicted_labels, output_csv_file):
    results_df = pd.DataFrame({'fnames': file_names, 'label': predicted_labels})
    results_df.to_csv(output_csv_file, index=False)

# 示例用法
if __name__ == '__main__':
    model_path = 'trained_model.h5'  # 已训练模型的文件路径
    test_data_dir = 'test_data'  # 测试数据集的目录
    output_csv_file = 'test_results.csv'  # 结果保存的CSV文件名

    # 加载已训练的模型
    trained_model = load_trained_model(model_path)
#见完整版代码

完整代码+思路:
2023年第四届MathorCup大数据竞赛(A题)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/106921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 中添加 vconsole

uniapp 中添加 vconsole 一、安装 vconsole npm i vconsole二、使用 vconsole 在项目的 main.js 文件中添加如下内容 // #ifdef H5 // 提交前需要注释 本地调试使用 import * as vconsole from "vconsole"; new vconsole() // 使用 vconsole // #endif三、成功

在Go项目中二次封装Kafka客户端功能

1.摘要 在上一章节中,我利用Docker快速搭建了一个Kafka服务,并测试成功Kafka生产者和消费者功能,本章内容尝试在Go项目中对Kafka服务进行封装调用, 实现从Kafka自动接收消息并消费。 在本文中使用了Kafka的一个高性能开源库Sarama, Sarama是一个遵循MIT许可协议的Apache Kafk…

禁止chrome浏览器更新方式

1、禁用更新服务 WinR调出运行,输入services.msc,进入服务。 在服务中有两个带有Google Update字样,双击打开后禁用,并把恢复选项设置为无操作。 2、删除计划任务 运行taskschd.msc,打开计划任务程序库,在…

FL Studio21水果编曲软件如何切换成官方中文版

FL studio又被国内网友称之为水果音乐制作软件21版本,是Image-Line公司成立23周年而发布的一个版本,FL studio中文版是目前互联网上最优秀的完整的软件音乐制作环境或数字音频工作站,FL Studio包含了编排,录制,编辑&am…

Leetcode刷题详解——点名

1. 题目链接:LCR 173. 点名 2. 题目描述: 某班级 n 位同学的学号为 0 ~ n-1。点名结果记录于升序数组 records。假定仅有一位同学缺席,请返回他的学号。 示例 1: 输入: records [0,1,2,3,5] 输出: 4示例 2: 输入: records [0, 1, 2, 3, 4,…

MATLAB中polyvalm函数用法

目录 语法 说明 示例 特征多项式的矩阵计算 polyvalm函数的功能是矩阵多项式计算。 语法 Y polyvalm(p,X) 说明 Y polyvalm(p,X) 以矩阵方式返回多项式 p 的计算值。此计算方式等同于使用多项式 p 替换矩阵 X。 示例 特征多项式的矩阵计算 求解 4 阶帕斯卡矩阵的特征…

Android-登录注册页面(第三次作业)

第三次作业 - 登录注册页面 题目要求 嵌套布局。使用线性布局的嵌套结构,实现登录注册的页面。(例4-3) 创建空的Activity 项目结构树如下图所示: 注意:MainActivity.java文件并为有任何操作,主要功能集中…

docker应用部署---Tomcat的部署配置

1. 搜索tomcat镜像 docker search tomcat2. 拉取tomcat镜像 docker pull tomcat3. 创建容器,设置端口映射、目录映射 # 在/root目录下创建tomcat目录用于存储tomcat数据信息 mkdir ~/tomcat cd ~/tomcatdocker run -id --namec_tomcat \ -p 8080:8080 \ -v $PWD:…

项目管理工具ConceptDraw PROJECT mac中文版自定义列功能

ConceptDraw PROJECT Mac是一款专业的项目管理工具,适用于MacOS平台。它提供了成功规划和执行项目所需的完整功能,包括任务和资源管理、报告和变更控制。 这款软件可以与ConceptDraw office集成,利用思维导图和数据可视化的强大功能来改进项目…

极米科技H6 Pro 4K、H6 4K高亮定焦版——开启家用投影4K普及时代

智能投影产业经过几年发展,市场规模正在快速扩大。洛图数据显示,预计今年中国投影出货量有望超700万台,2027年达950万台,可见智能投影产业规模将逐渐壮大,未来可期。2023年,投影行业呈现出全新面貌&#xf…

2016年亚太杯APMCM数学建模大赛A题基于光学信息数据的温度及关键元素含量预测求解全过程文档及程序

2016年亚太杯APMCM数学建模大赛 A题 基于光学信息数据的温度及关键元素含量预测 原题再现 光含有能量,在一定条件下可以转化为热。燃烧是一种常见的现象,既能发光又能发热。光和热通常是同时存在的,一般来说,光强度越高&#xf…

【ETL工具】Datax-ETL-SqlServerToHDFS

🦄 个人主页——🎐个人主页 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 感谢点赞和关注 ,每天进步一点点!加油!&…

ATV32变频器在堆垛机应用

一、机型介绍: 目前国内物流行业发展速度很快,特别是在自动仓库这一块,自动仓库用的最多是堆垛机,自动仓库目前驱动用得基本上变频器。品牌基本是丹佛斯、日系及其他等重载系列变频器。设备主要包括:提升机、货叉及行…

【鸿蒙软件开发】ArkTS基础组件之Gauge(环形图表)、LoadingProgress(动态加载)

文章目录 前言一、Gauge环形图表1.1 子组件1.2 接口参数介绍 1.2 属性1.3 示例代码二、LoadingProgress2.1 子组件2.2 接口2.3 属性2.4 示例代码 总结 前言 Gauge:数据量规图表组件,用于将数据展示为环形图表。 LoadingProgress:用于显示加载…

DevOps持续集成-Jenkins(2)

文章目录 DevOpsDevOps概述Integrate工具(centos7-jenkins主机)Integrate概述Jenkins介绍CI/CD介绍Linux下安装最新版本的Jenkins⭐Jenkins入门配置安装必备插件⭐安装插件(方式一:可能有时会下载失败)安装插件&#x…

Python 算法高级篇:归并排序的优化与外部排序

Python 算法高级篇:归并排序的优化与外部排序 引言 1. 归并排序的基本原理2. 归并排序的优化2.1 自底向上的归并排序2.2 最后优化 3. 外部排序4. 性能比较5. 结论 引言 在计算机科学中,排序是一项基本的任务,而归并排序( Merge S…

MTK AEE_EXP调试方法及user版本打开方案

一、AEE介绍 AEE (Android Exception Engine)是安卓的一个异常捕获和调试信息生成机制。 手机发生错误(异常重启/卡死)时生成db文件(一种被加密过的二进制文件)用来保存和记录异常发生时候的全部内存信息,经过调试和仿真这些信息,能够追踪到异常的缘由。 二、调试方法…

【C++】Linux下如何查看opencv的版本

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…

职业技术认证:《研发效能(DevOps)工程师》——开启职业发展新篇章

在互联网行业中,资质认证可以证明在该领域内的专业能力和知识水平。各种技术水平认证也是层出不穷,而考取具有公信力和权威性的认证是从业者的首选。同时,随着国内企业技术实力的提升和国家对于自主可控的重视程度不断提高,国产证…