强化学习------PPO算法

目录

    • 简介
    • 一、PPO原理
        • 1、由On-policy 转化为Off-policy
        • 2、Importance Sampling(重要性采样)
        • 3、off-policy下的梯度公式推导
    • 二、PPO算法两种形式
        • 1、PPO-Penalty
        • 2、PPO-Clip
    • 三、PPO算法实战
    • 四、参考

简介

PPO 算法之所以被提出,根本原因在于 Policy Gradient 在处理连续动作空间时 Learning rate 取值抉择困难。
Learning rate 取值过小,就会导致深度强化学习收敛性较差,陷入完不成训练的局面,取值过大则导致新旧策略迭代时数据不一致,造成学习波动较大或局部震荡。除此之外,Policy Gradient 因为在线学习的性质,进行迭代策略时原先的采样数据无法被重复利用,每次迭代都需要重新采样;
同样地置信域策略梯度算法(Trust Region Policy Optimization,TRPO)虽然利用重要性采样(Important-sampling)、共轭梯度法求解提升了样本效率、训练速率等,但在处理函数的二阶近似时会面临计算量过大,以及实现过程复杂、兼容性差等缺陷

PPO 算法具备 Policy Gradient、TRPO 的部分优点,采样数据和使用随机梯度上升方法优化代替目标函数之间交替进行,虽然标准的策略梯度方法对每个数据样本执行一次梯度更新,但 PPO 提出新目标函数,可以实现小批量更新。

PPO 算法可依据 Actor 网络的更新方式细化为:

  • 含有自适应 KL-散度(KL Penalty)PPO-Penalty
  • 含有 Clippped Surrogate Objective 函数的 PPO-Clip

下面我们一次介绍PPO算法的基本原理,以及 PPO-PenaltyPPO-Clip两种形式的PPO算法

一、PPO原理

1、由On-policy 转化为Off-policy
  • 如果被训练的agent和与环境做互动的agent(生成训练样本)是同一个的话,那么叫做on-policy(同策略)。
  • 如果被训练的agent和与环境做互动的agent(生成训练样本)不是同一个的话,那么叫做off-policy(异策略)。

PPO算法是在Policy Gradient算法的基础上由来的,Policy Gradient是一种on-policy的方法,他首先要利用现有策略和环境互动,产生学习资料,然后利用产生的资料,按照Policy Gradient的方法更新策略参数。然后再用新的策略去交互、更新、交互、更新,如此重复。这其中有很多的时间都浪费在了产生资料的过程中,所以我们应该让PPO算法转化为Off-Policy

Off-Policy的目的就是更加充分的利用actor产生的交互资料,增加学习效率。

2、Importance Sampling(重要性采样)

重要性采样(Importance Sampling)推导过程
Importance Sampling 是一种用于估计在一个分布下的期望值的方法。在强化学习中,我们需要估计由当前策略产生的样本的值函数,然后利用该估计值来优化策略。然而,在训练过程中,我们通常会使用一些已经训练好的旧策略来采集样本,而不是使用当前的最新策略。这就导致了采样样本和当前策略不匹配的问题,也就是所谓的“策略偏移”。

为什么要在PPO算法中使用Importance Sampling
我们看一下Policy Gradient的梯度公式:
在这里插入图片描述
问题在于上面的式子是基于 τ ~ p θ ( τ ) τ ~p_θ (τ) τpθ(τ)采样的,一旦更新了参数,从θ到θ ′ ,这个概率 P θ P_{\theta} Pθ就不对了。而Importance Sampling解决的正是从 τ ~ p θ ( τ ) \tau~p_\theta(\tau) τpθ(τ)采样,计算θ '的 ∇ R ˉ ( τ ) \nabla\bar{R}(\tau) Rˉ(τ)的问题。

重要性采样(Importance Sampling)推导过程的推导可以点击链接查看,这里直接给出公式:
在这里插入图片描述

上面的式子表示,已知x服从分布p,我们要计算f(x),但是p不方便采样,我们就可以通过q去采样,计算期望。
在这里插入图片描述
这里我们用q做采样, p ( x ) q ( x ) \frac{p(x)}{q(x)} q(x)p(x)叫做重要性权重,用来修正q与p两个分布的差异。理论上利用重要性采样的方法我们可以用任何q来完成采样,但是由于采样数量的限制,q与p的差异不能太大。如果差异过大 E x ~ q [ f ( x ) p ( x ) q ( x ) ] E _{x~q} [f(x) \frac{p(x)}{q(x)} ] Exq[f(x)q(x)p(x)] E x ~ q [ f ( x ) ] E _{x~q} [f(x) ] Exq[f(x)]的差异也会很大。

3、off-policy下的梯度公式推导

on-policy情况下,Policy Gradient公式为:
在这里插入图片描述
由上面的推导可得,我们利用 θ ′ \theta' θ ,优化 θ \theta θ时的公式为:

在这里插入图片描述
其中 A θ ( s t , a t ) A^{\theta}(s_t, a_t) Aθ(st,at)比较优势,从该项的推导过程可以知道,它是由采样样本决定的,所以应该用 A θ ′ ( s t , a t ) A^{\theta'}(s_t, a_t) Aθ(st,at)表示,所以式子变为:
在这里插入图片描述
p θ ( s t , a t ) p_{\theta(s_t,a_t)} pθ(st,at) 展开可得:
在这里插入图片描述
我们认为某一个状态 s t s_t st出现的概率与策略函数无关,只与环境有关,所以可以认为 p θ ( s t ) ≈ p θ ′ ( s t ) p_{\theta(s_t)} \approx p_{\theta'(s_t)} pθ(st)pθ(st),由此得出如下公式:
在这里插入图片描述
根据上面的式子,我们就可以完成off-policy的工作,反推出目标函数为:
在这里插入图片描述

二、PPO算法两种形式

1、PPO-Penalty

PPO-Penalty 基于 KL散度惩罚项优化目标函数。
PPO-Penalty 的主要思想是将非负约束视为一种奖惩机制。具体来说,当一个行为不符合约束条件(比如动作小于0)时,我们会对策略进行惩罚。这种惩罚采用了一种类似于强化学习中的奖励机制的方式,即在损失函数中引入一个 penalty term

例如,在 PPO-Penalty 中,我们可以将惩罚项添加到 PPO 算法的损失函数中,可以是在 KL 散度约束项的后面添加一个 penalty term 或者在损失函数中添加一个额外的 penalty term。这个 penalty term 会根据动作的非负性来惩罚那些不符合约束条件的行为,从而强制策略学会产生符合约束条件的行为。
用拉格朗日乘数法直接将KL散度的限制放入目标函数,变成一个无约束的优化问题。同时还需要更新KL散度的系数。
在这里插入图片描述
d k = D K L v π θ k [ π θ k ( ⋅ ∣ s ) , π θ ( ⋅ ∣ s ) ] d_k=D^{v^{\pi_{\theta_k}}}_{KL}[\pi_{\theta_k}(\cdot|s), \pi_{\theta}(\cdot|s)] dk=DKLvπθk[πθk(s),πθ(s)]

  • 如果 d k < δ / 1.5 d_k < \delta /1.5 dk<δ/1.5, 那么 β k + 1 = β k / 2 \beta_{k+1} = \beta_k/2 βk+1=βk/2
  • 如果 d k > δ ∗ 1.5 d_k > \delta *1.5 dk>δ1.5, 那么 β k + 1 = β k / 2 \beta_{k+1} = \beta_k/2 βk+1=βk/2
  • 否则 β k + 1 = β k \beta_{k+1} = \beta_k βk+1=βk

相对PPO-Clip来说计算还是比较复杂,我们在之后的例子使用PPO-Clip

2、PPO-Clip

PPO-Clip 的目标是在优化策略的同时,控制策略更新的幅度,以避免更新过大导致策略发生剧烈变化。这可以提供算法的稳定性,并且有助于收敛到一个比较好的策略。

具体来说,PPO-Clip 在优化过程中使用一个剪切函数来限制新旧策略之间的差异。这个剪切函数用于计算出新旧策略在每个动作样本上的比例,并将其与一个预先设定的范围进行比较。

剪切函数使用的是一个剪切比例,通常表示为 clip_ratio,它是一个介于0和1之间的数值。比如,如果 clip_ratio 设置为0.2,那么在计算新旧策略比例时,会将比例限制在0.8到1.2之间。

使用剪切函数,PPO-Clip 有两个重要的优点:

  • 剪切目标:PPO-Clip 使用剪切函数来确保新策略更新不超过一个预定的范围,从而避免了过大的策略变化。这可以防止策略的不稳定性和发散,同时保证算法的收敛性。
  • 改进策略更新:PPO-Clip 可以通过剪切目标的方式改进策略更新的效果。在优化过程中,通过比较新旧策略在每个样本上的比例,并选择较小的那个,可以保留原始策略中已经表现良好的部分,从而提高策略的稳定性和性能。

PPO-Clip直接在目标函数中进行限制,保证新的参数和旧的参数的差距不会太大。
在这里插入图片描述
本质就是将新旧动作的差异限定在 [ 1 − ϵ , 1 + ϵ ] [1-\epsilon, 1+\epsilon] [1ϵ,1+ϵ]
如果A > 0,说明这个动作的价值高于平均,最大化这个式子会增大 π θ ( a ∣ s ) π θ k ( a ∣ s ) \frac{\pi_\theta(a|s)}{\pi_{\theta_k}(a|s)} πθk(as)πθ(as)但是不会让超过 1 + ϵ 1+\epsilon 1+ϵ。反之,A<0,最大化这个式子会减少 π θ ( a ∣ s ) π θ k ( a ∣ s ) \frac{\pi_\theta(a|s)}{\pi_{\theta_k}(a|s)} πθk(as)πθ(as)但是不会让超过 1 − ϵ 1-\epsilon 1ϵ
可以简单绘制如下:
在这里插入图片描述
算法流程如下:
在这里插入图片描述

三、PPO算法实战

PPO-Clip更加简洁,同时大量的实验也表名PPO-Clip总是比PPO-Penalty 效果好。所以我们就用PPO-Clip算法进行代码实战。

我们使用使用的环境是OpenAI gym中的CartPole-v0环境
在这里插入图片描述
代码解释可以看代码中的注释,这里不再赘述
ppo_torch.py

import os
import numpy as np
import torch as T
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical


class PPOMemory:
    """
    经验池
    """
    def __init__(self, batch_size):
        self.states = []
        self.probs = []
        self.vals = []
        self.actions = []
        self.rewards = []
        self.dones = []

        self.batch_size = batch_size

    def generate_batches(self):
        n_states = len(self.states)
        batch_start = np.arange(0, n_states, self.batch_size)
        indices = np.arange(n_states, dtype=np.int64)
        np.random.shuffle(indices)
        batches = [indices[i:i + self.batch_size] for i in batch_start]

        return np.array(self.states), \
               np.array(self.actions), \
               np.array(self.probs), \
               np.array(self.vals), \
               np.array(self.rewards), \
               np.array(self.dones), \
               batches

    def store_memory(self, state, action, probs, vals, reward, done):
        self.states.append(state)
        self.actions.append(action)
        self.probs.append(probs)
        self.vals.append(vals)
        self.rewards.append(reward)
        self.dones.append(done)

    def clear_memory(self):
        self.states = []
        self.probs = []
        self.actions = []
        self.rewards = []
        self.dones = []
        self.vals = []


class ActorNetwork(nn.Module):
    """
    构建策略网络--actor
    """
    def __init__(self, n_actions, input_dims, alpha,
                 fc1_dims=256, fc2_dims=256, chkpt_dir='tmp/ppo'):
        super(ActorNetwork, self).__init__()

        self.checkpoint_file = os.path.join(chkpt_dir, 'actor_torch_ppo')
        self.actor = nn.Sequential(
            nn.Linear(*input_dims, fc1_dims),
            nn.ReLU(),
            nn.Linear(fc1_dims, fc2_dims),
            nn.ReLU(),
            nn.Linear(fc2_dims, n_actions),
            nn.Softmax(dim=-1)
        )

        self.optimizer = optim.Adam(self.parameters(), lr=alpha)
        self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
        self.to(self.device)

    def forward(self, state):
        """
        返回动作的概率分布
        :param state:
        :return:
        """
        dist = self.actor(state)
        dist = Categorical(dist)

        return dist  # 返回动作的概率分布

    def save_checkpoint(self):
        """
        保存模型
        :return:
        """
        T.save(self.state_dict(), self.checkpoint_file)

    def load_checkpoint(self):
        """
        加载模型
        :return:
        """
        self.load_state_dict(T.load(self.checkpoint_file))


class CriticNetwork(nn.Module):
    """
    构建价值网络--critic
    """
    def __init__(self, input_dims, alpha, fc1_dims=256, fc2_dims=256,
                 chkpt_dir='tmp/ppo'):
        super(CriticNetwork, self).__init__()

        self.checkpoint_file = os.path.join(chkpt_dir, 'critic_torch_ppo')
        self.critic = nn.Sequential(
            nn.Linear(*input_dims, fc1_dims),
            nn.ReLU(),
            nn.Linear(fc1_dims, fc2_dims),
            nn.ReLU(),
            nn.Linear(fc2_dims, 1)
        )

        self.optimizer = optim.Adam(self.parameters(), lr=alpha)
        self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
        self.to(self.device)

    def forward(self, state):
        value = self.critic(state)

        return value

    def save_checkpoint(self):
        """
        保存模型
        :return:
        """
        T.save(self.state_dict(), self.checkpoint_file)

    def load_checkpoint(self):
        """
        加载模型
        :return:
        """
        self.load_state_dict(T.load(self.checkpoint_file))


class Agent:
    def __init__(self, n_actions, input_dims, gamma=0.99, alpha=0.0003, gae_lambda=0.95,
                 policy_clip=0.2, batch_size=64, n_epochs=10):
        self.gamma = gamma
        self.policy_clip = policy_clip
        self.n_epochs = n_epochs
        self.gae_lambda = gae_lambda
        # 实例化策略网络
        self.actor = ActorNetwork(n_actions, input_dims, alpha)
        # 实例化价值网络
        self.critic = CriticNetwork(input_dims, alpha)
        # 实例化经验池
        self.memory = PPOMemory(batch_size)

    def remember(self, state, action, probs, vals, reward, done):
        """
        记录轨迹
        :param state:
        :param action:
        :param probs:
        :param vals:
        :param reward:
        :param done:
        :return:
        """
        self.memory.store_memory(state, action, probs, vals, reward, done)

    def save_models(self):
        print('... saving models ...')
        self.actor.save_checkpoint()
        self.critic.save_checkpoint()

    def load_models(self):
        print('... loading models ...')
        self.actor.load_checkpoint()
        self.critic.load_checkpoint()

    def choose_action(self, observation):
        """
        选择动作
        :param observation:
        :return:
        """
        # 维度变换 [n_state]-->tensor[1,n_states]
        state = T.tensor([observation], dtype=T.float).to(self.actor.device)
        # 当前状态下,每个动作的概率分布 [1,n_states]
        dist = self.actor(state)
        # 预测,当前状态的state_value  [b,1]
        value = self.critic(state)
        # 依据其概率随机挑选一个动作
        action = dist.sample()

        probs = T.squeeze(dist.log_prob(action)).item()
        action = T.squeeze(action).item()
        value = T.squeeze(value).item()

        return action, probs, value

    def learn(self):
        # 每次学习需要更新n_epochs次参数
        for _ in range(self.n_epochs):
            # 提取数据集
            state_arr, action_arr, old_prob_arr, vals_arr, \
            reward_arr, dones_arr, batches = \
                self.memory.generate_batches()

            values = vals_arr
            advantage = np.zeros(len(reward_arr), dtype=np.float32)
            # 计算优势函数
            for t in range(len(reward_arr) - 1): # 逆序时序差分值 axis=1轴上倒着取 [], [], []
                discount = 1
                a_t = 0
                for k in range(t, len(reward_arr) - 1):
                    a_t += discount * (reward_arr[k] + self.gamma * values[k + 1] * \
                                       (1 - int(dones_arr[k])) - values[k])
                    discount *= self.gamma * self.gae_lambda
                advantage[t] = a_t
            advantage = T.tensor(advantage).to(self.actor.device)
            # 估计状态的值函数的数组
            values = T.tensor(values).to(self.actor.device)
            for batch in batches:
                # 获取数据
                states = T.tensor(state_arr[batch], dtype=T.float).to(self.actor.device)
                old_probs = T.tensor(old_prob_arr[batch]).to(self.actor.device)
                actions = T.tensor(action_arr[batch]).to(self.actor.device)
                # 用当前网络进行预测
                dist = self.actor(states)
                critic_value = self.critic(states)

                critic_value = T.squeeze(critic_value)
                # 每一轮更新一次策略网络预测的状态
                new_probs = dist.log_prob(actions)
                # 新旧策略之间的比例
                prob_ratio = new_probs.exp() / old_probs.exp()
                # prob_ratio = (new_probs - old_probs).exp()
                # 近端策略优化裁剪目标函数公式的左侧项
                weighted_probs = advantage[batch] * prob_ratio
                # 公式的右侧项,ratio小于1-eps就输出1-eps,大于1+eps就输出1+eps
                weighted_clipped_probs = T.clamp(prob_ratio, 1 - self.policy_clip,
                                                 1 + self.policy_clip) * advantage[batch]
                # 计算损失值进行梯度下降
                actor_loss = -T.min(weighted_probs, weighted_clipped_probs).mean()
                returns = advantage[batch] + values[batch]
                critic_loss = (returns - critic_value) ** 2
                critic_loss = critic_loss.mean()

                total_loss = actor_loss + 0.5 * critic_loss
                self.actor.optimizer.zero_grad()
                self.critic.optimizer.zero_grad()
                total_loss.backward()
                self.actor.optimizer.step()
                self.critic.optimizer.step()

        self.memory.clear_memory()


main.py

import gym
import numpy as np
from ppo_torch import Agent
from utils import plot_learning_curve

if __name__ == '__main__':
    print('开始训练!')
    env = gym.make('CartPole-v0')
    # 每经过N步就更新一次网络
    N = 20
    batch_size = 5
    # 每次更新的次数
    n_epochs = 4
    # 学习率
    alpha = 0.0003
    # 初始化智能体
    agent = Agent(n_actions=env.action_space.n, batch_size=batch_size,
                    alpha=alpha, n_epochs=n_epochs,
                    input_dims=env.observation_space.shape)
    # 训练轮数
    n_games = 300

    # 统计图
    figure_file = 'plots/cartpole.png'
    # 存储最佳得分
    best_score = env.reward_range[0]
    # 存储历史分数
    score_history = []
    # 更新网络的次数
    learn_iters = 0
    # 每一轮的得分
    avg_score = 0
    # 总共在环境中走的步数
    n_steps = 0

    # 开始玩游戏
    for i in range(n_games):
        observation = env.reset()
        done = False
        score = 0
        while not done:
            action, prob, val = agent.choose_action(observation)
            observation_, reward, done, info = env.step(action)
            env.render()
            n_steps += 1
            score += reward
            # 存储轨迹
            agent.remember(observation, action, prob, val, reward, done)
            if n_steps % N == 0:
                # 更新网络
                agent.learn()
                learn_iters += 1
            observation = observation_
        score_history.append(score)
        avg_score = np.mean(score_history[-100:])

        # 比较最佳得分  保存最优的策略
        if avg_score > best_score:
            best_score = avg_score
            agent.save_models()

        print('episode', i, 'score %.1f' % score, 'avg score %.1f' % avg_score,
                'time_steps', n_steps, 'learning_steps', learn_iters)
    x = [i+1 for i in range(len(score_history))]
    plot_learning_curve(x, score_history, figure_file)


画图工具
utils.py

import numpy as np
import matplotlib.pyplot as plt

def plot_learning_curve(x, scores, figure_file):
    running_avg = np.zeros(len(scores))
    for i in range(len(running_avg)):
        running_avg[i] = np.mean(scores[max(0, i-100):(i+1)])
    plt.plot(x, running_avg)
    plt.title('Running average of previous 100 scores')
    plt.savefig(figure_file)

效果如下:

******
在这里插入图片描述

四、参考

PPO实践(Pendulum-v1)

PyTorch实现PPO代码

PPO 模型解析,附Pytorch完整代码

详解+推导!!PPO 近端策略优化

Policy Gradient 策略梯度法

蒙特卡洛方法、接受拒绝采样、重要性采样、MCMC方法

机器学习:KL散度详解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/106478.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

按照正规的软件开发流程,项目原型评审是全程对着页面评审吗

项目原型评审是软件开发过程中的一步&#xff0c;它的目的是确保设计和需求的一致性&#xff0c;以及提供一个可视化的界面供所有相关方进行沟通和理解。评审过程中&#xff0c;可能会涉及到多个方面&#xff1a; 用户界面&#xff08;UI&#xff09;&#xff1a;确保UI设计满足…

电脑如何激活windows

当我们电脑出现如下图&#xff1a; 显示需要激活windows时&#xff0c;操作如下。 1、桌面-新建-文本文档 2、将文档命名为&#xff08;激活windows.bat&#xff09;把原有文档中的后缀.txt去掉 3、点击右键&#xff0c;选择编辑输入代码 slmgr/skms kms.03k.org slmgr/ato4、…

Python----break关键字对while...else结构的影响

案例&#xff1a; 女朋友生气&#xff0c;要求道歉5遍&#xff1a;老婆大人&#xff0c;我错了。道歉到第三遍的时候&#xff0c;媳妇埋怨这一遍说的不真诚&#xff0c;是不是就是要退出循环了&#xff1f;这个退出有两种可能性&#xff1a; ① 更生气&#xff0c;不打算原谅…

c语言进制的转换8进制转换2进制

c语言进制的转换之8进制转换2进制与2转8 c语言的进制的转换 c语言进制的转换之8进制转换2进制与2转8一、八四二一法则二、八进制转换二进制方法三、八进制程序打印 一、八四二一法则 二、八进制转换二进制方法 如&#xff1a;3703转换为2进制 按照八四二一法则&#xff0c;分为…

创纪录的1亿RPS DDoS攻击利用HTTP/2快速重置漏洞

导语&#xff1a;最近&#xff0c;一项创纪录的DDoS攻击引起了广泛关注。攻击者利用了HTTP/2协议中的一个快速重置漏洞&#xff0c;发起了一系列超大规模的攻击。本文将为大家详细介绍这次攻击的背景、影响以及应对措施。 攻击背景 最近&#xff0c;全球范围内遭受了一系列规模…

Fabric.js 样式不更新怎么办?

本文简介 带尬猴&#xff0c;我嗨德育处主任 不知道你有没有遇到过在使用 Fabric.js 时无意中一些骚操作修改了元素的样式&#xff0c;但刷新画布却没更新元素样式&#xff1f; 如果你也遇到同样的问题的话&#xff0c;可以尝试使用本文的方法。 是否需要重新绘制 我先举个例…

【Javascript】ajax(阿甲克斯)

目录 什么是ajax? 同步与异步 原理 注意 写一个ajax请求 创建ajax对象 设置请求方式和地址 发送请求 设置响应HTTP请求状态变化的函数 什么是ajax? 是基于javascript的一种用于创建快速动态网页的技术&#xff0c;是一种在无需重新加载整个网页的情况下&#xff0c…

解决Visual studio 未能正确加载...包问题

问题 解决&#xff1a; 菜单: Visual Studio 2019 -> 输入"devenv /resetsettings " 将之前的设置恢复到原始状态。且可以正常使用。理论应该可以使用到其它版本中……

业务架构、应用架构、技术架构、数据架构

架构规划的重要性 如果没有进行合理的架构规划&#xff0c;将会引发一系列的问题。为了避免这些问题的发生&#xff0c;企业需要进行业务架构、应用架构、技术架构和数据架构的全面规划和设计&#xff0c;以构建一个清晰、可持续发展的企业架构。 https://www.zhihu.com/que…

CVE-2022-32991靶场复现

靶场环境&#xff1a; 题目提示了该CMS的welcome.php中存在SQL注入攻击。 CVE官方给出的提示&#xff1a; welcome.php页面存在SQL注入&#xff0c;并且这个参数是eid 打开靶场环境&#xff1a; 页面是一个登陆注册的界面 用户注册&#xff1a; 1 010.com 123456 123456 点击Re…

web - Tomcat服务器

文章目录 目录 文章目录 前言 一 . CS和BS的异同 二 . 什么是Tomcat 二 . Tomcat安装 四 . Tomcat目录结构 bin目录: 用于存放二进制的可执行文件 config目录 server.xml&#xff1a;配置整个服务器信息。例如修改端口号。默认HTTP请求的端口号是&#xff1a;8080 lib目录 log…

【电路笔记】-电路中的复数与相量(Phasor)

电路中的复数与相量(Phasor) 文章目录 电路中的复数与相量(Phasor)1、概述2、复数定义3、复数计算规则4、电子领域的复数5、总结 复数是一种重要的数学工具&#xff0c;广泛应用于包括电子学在内的许多物理领域。 这个概念可能看起来很奇怪&#xff0c;但它们的操作很简单&…

C++进阶语法——OOP(面向对象)【学习笔记(四)】

文章目录 1、C OOP⾯向对象开发1.1 类&#xff08;classes&#xff09;和对象&#xff08;objects&#xff09;1.2 public、private、protected访问权限1.3 实现成员⽅法1.4 构造函数&#xff08;constructor&#xff09;和 析构函数&#xff08;destructor&#xff09;1.4.1 构…

第四章 文件管理 八、文件保护

目录 一、口令保护 1、定义&#xff1a; 2、优点&#xff1a; 3、缺点: 二、加密保护 1、定义&#xff1a; 2、例子&#xff1a; 2、优点&#xff1a; 3、缺点: 三、访问控制 1、定义&#xff1a; 2、精简的访问控制表&#xff1a; &#xff08;1&#xff09;定义&a…

JS实现商品SKU

<!DOCTYPE html> <html> <head><title>商品SKU</title><link rel"stylesheet" href"element/css/element.css"><style>*{ margin:0; padding:0px; box-sizing: border-box; }ul,li{ list-style-type: none;}bod…

LVS集群-NAT模式

集群的概念&#xff1a; 集群&#xff1a;nginx四层和七层动静分离 集群标准意义上的概念&#xff1a;为解决特定问题将多个计算机组合起来形成一个单系统 集群的目的就是为了解决系统的性能瓶颈。 垂直扩展&#xff1a;向上扩展&#xff0c;增加单个机器的性能&#xff0c;…

JVM 类的加载子系统

文章目录 类的加载过程加载阶段链接阶段初始化 类的加载器测试代码中获取对应的加载器获取加载器加载的路径不同类对应的加载器自定义加载器自定义加载器的方式 获取类的加载器的方式双亲委派机制双亲委派机制的好处 Java 的 SPI 机制1. 接口定义2. 具体实现3. 配置 META-INF/s…

StreamSaver.js入门教程:优雅解决前端下载文件的难题

本文简介 点赞 关注 收藏 学会了 本文介绍一个能让前端优雅下载大文件的工具&#xff1a;StreamSaver.js ⚡️ StreamSaver.js GitHub地址⚡️ 官方案例 StreamSaver.js 可用于实现在Web浏览器中直接将大文件流式传输到用户设备的功能。 传统的下载方式可能导致大文件的加…

centos ubantu IP一直变化,远程连接不上问题

文章目录 一、为什么IP地址会变1.主机DHCP导致 二、解决IP地址变化1.centos2.ubantu 总结 虚拟机能连接为互联网,但下一次启动IP地址再发生变化,无法使用ssh远程连接 一、为什么IP地址会变 1.主机DHCP导致 虚拟机系统(ubantu,centos…)启动后会向本地申请IP地址租约,租聘的I…

Java采集传感器数据,亲测有效!

背景 先说背景&#xff0c; 最近公司项目需要用到传感器&#xff0c;采集设备温湿度&#xff0c;倾斜角&#xff0c;电流…&#xff0c;公司采购采购了一个温湿度传感器给我们开发测试使用&#xff0c;如下图&#xff1a; 看着还挺精致有没有。 进入正题 有了这个温湿度传感器…