图像去噪滤波算法汇总(Python)


前言

上篇文章:图像数据噪音种类以及Python生成对应噪音,汇总了常见的图片噪音以及噪音生成方法,主要用在数据增强上面,作为数据集填充的方式,可以避免模型过拟合。想要了解图像数据增强算法的可以去看本人所撰这篇文章:图像数据增强算法汇总(Python)。

本篇文章将介绍常用到的图像去噪滤波算法,采用实例代码和处理效果一并展现的方式进行介绍,能够更直观的看到每种算法的效果。本篇文章偏实战,所以不会涉及到过多每种算法的原理理论计算公式,以一篇文章快速了解并实现这些算法,以效率最高的方式熟练这些知识。

博主专注数据挖掘五年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型、机器学习和深度学习以及代码,每一篇文章都包含实战项目以及可运行代码。博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码。希望有需求的小伙伴不要错过笔者精心打造的专栏。


一、图像噪音来源

随着图像获取技术的不断发展,我们在实际应用中常常会面临到各种形式的图像噪声,这些噪声会影响到图像的质量和特征的清晰度。为了有效地提升图像的质量,图像处理领域涌现出了多种去噪方法,它们以不同的原理和技术手段来应对各种噪声情况。在接下来的介绍中,我们将详细探讨一些常用的图像去噪方法,包括均值滤波、中值滤波、高斯滤波等,以及它们的适用场景和特点。让我们一起深入了解如何有效地应对图像噪声,提升图像处理的准确度和质量。 图像噪音可以由多种因素引起:

  1. 传感器噪音: 摄像机、扫描仪等图像采集设备本身会引入噪音,这是由于设备的电子元件和信号处理过程中的微小不确定性。

  2. 环境条件: 光线不足、强光、阴影等环境因素可能会导致图像中的噪音增加。

  3. 传输或存储中的干扰: 在图像传输或存储过程中,信号可能会受到电磁干扰、压缩算法等因素的影响,从而产生噪音。

  4. 设备老化或损坏: 图像采集设备的老化、损坏或不稳定可能会导致图像中出现各种噪音。

  5. 信号采样误差: 在信号采样过程中,由于采样率不足或量化误差等原因,会引入噪音。

  6. 电磁干扰: 来自电器设备、无线信号等电磁波的干扰可能会影响到图像质量。

  7. 传感器特性: 不同类型的传感器(例如CMOS、CCD)具有不同的特性,它们在信号处理过程中可能会引入特定类型的噪音。

二、图像去噪算法

1.均值滤波

均值滤波是一种常用的图像处理技术,它的原理是将图像中每个像素的值替换为周围像素值的平均数。这样可以平滑图像,减少噪声的影响。具体的实现步骤如下:

  1. 确定滤波器大小:均值滤波器的大小由一个参数决定,通常用一个正奇数来表示,如3x3、5x5等。这个值决定了滤波器在图像上的覆盖区域。

  2. 将滤波器放置在图像的每个像素上:以当前像素为中心,将滤波器覆盖在图像上。

  3. 计算周围像素的平均值:将滤波器覆盖区域内的所有像素值取平均,得到一个新的像素值。

  4. 将新的像素值赋给当前位置:用计算得到的新像素值替代原来的像素值。

均值滤波主要用于去除图像中的随机噪声,例如高斯噪声或盐椒噪声。它在保留图像整体结构的同时,可以有效地减轻噪声的影响。

使用均值滤波算法来去除图片的高斯噪音可以通过以下步骤实现:

1.应用均值滤波

# 设置卷积核大小,通常选择奇数
kernel_size = 3
# 使用均值滤波进行去噪
denoised_image = cv2.blur(image, (kernel_size, kernel_size))

 2.显示原始图片和去噪后的图片

cv2.imshow('Original Image', image)
cv2.imshow('Denoised Image', denoised_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

然而,均值滤波对于一些特定类型的噪声(如周期性噪声)可能效果不佳,因为这些噪声会在图像中形成特定的模式,而均值滤波只能模糊图像,无法针对特定模式的噪声进行处理。总的来说,均值滤波是一种简单而有效的去噪方法,适用于大多数情况下的随机噪声去除。但在特定情况下,可能需要考虑其他类型的滤波器或去噪技术。卷积核越大,参与到均值运算中的像素就会越多,即当前计算的算的是更多点的像素值的平均值,去噪效果越好,当然花费的计算时间也会越长,同时让图像失真越严重。因此在实际处理中,要在失真和去噪效果之间取得平衡,选取合适大小的卷积核

2.中值滤波

中值滤波是一种常用于图像处理中的非线性滤波方法,其基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,从而达到去除噪音的目的。总共分两步:

  • 将滤波器窗口置于图像的某一像素处。

  • 将窗口中的像素值按大小排序,取其中间值作为该像素的新值。

能够处理的图像噪音类别:

中值滤波主要适用于以下几种图像噪音:

  1. 椒盐噪声:即图像中出现的黑白像素点。

  2. 横纹噪声:出现在图像中的横向条纹。

  3. 斑点噪声:散布在图像中的随机白点。

然而,中值滤波也有一些局限性,比如在保留图像细节的同时也会模糊图像,卷积核选择和均值滤波算法存在一样的问题,卷积核越大,参与到均值运算中的像素就会越多,即当前计算的算的是更多点的像素值的平均值,去噪效果越好,当然花费的计算时间也会越长,同时让图像失真越严重:

gray_image = cv2.cvtColor(noisy_image, cv2.COLOR_BGR2GRAY)
denoised_image = cv2.medianBlur(gray_image, 5)  # 5表示核的大小,可以根据需要调整

cv2.imshow('Original Image', noisy_image)
cv2.imshow('Denoised Image', denoised_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

3.高斯滤波

高斯滤波是一种线性平滑滤波器,它采用高斯函数作为权值函数进行图像滤波。高斯滤波的基本思想是通过对图像中每个像素周围的像素进行加权平均,从而降低噪声的影响,同时保留图像的边缘信息。高斯滤波器会使用一个高斯函数来计算权重,距离中心点越近的像素拥有越大的权重,距离越远的像素拥有越小的权重。

高斯滤波主要用于去除图像中的高频噪声,使图像变得更加平滑,同时也可以用于图像模糊或降低图像的细节信息。高斯滤波对高斯噪声的去除效果非常显著,可以有效地使图像变得更加平滑:

# 设置高斯滤波的内核大小,通常选择一个奇数值
kernel_size = 5
blurred_image = cv2.GaussianBlur(noisy_image, (kernel_size, kernel_size), 0)

cv2.imshow('Original Image', noisy_image)
cv2.imshow('Blurred Image', blurred_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

4.双边滤波

双边滤波(Bilateral Filtering)是一种用于图像去噪的非线性滤波器。与高斯滤波不同,双边滤波考虑了像素之间的空间距离和像素值之间的相似性。

原理和功能:

  1. 空间距离权重:除了像素值之间的相似性,双边滤波还考虑了像素之间的空间距离。这意味着附近的像素对于滤波的影响更大,而远离的像素对滤波的影响更小。

  2. 相似性权重:双边滤波器使用高斯函数来度量像素值之间的相似性。如果两个像素的值非常相似,它们的权重较大。如果它们的值差异很大,它们的权重较小。

  3. 保留边缘信息:相比于一般的平滑滤波器,双边滤波器可以保留图像的边缘信息。这是因为它会考虑到边缘处像素的相似性。

双边滤波器可以有效地处理各种类型的噪音,包括高斯噪音、椒盐噪音等。

# 应用双边滤波
filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)

 

在一些名画细节上面修复去噪更加能够体现出来:

修复前

修复后:

 

 相比高斯滤波修复算法:

双边滤波器特别适用于那些需要保留图像细节和边缘的情况。

5.NL-Means(Non-Local Means)

NL-Means(Non-Local Means)是一种图像去噪算法,它通过利用图像中相似区域的信息来降低噪声水平,而不会损失图像的细节信息。NL-Means算法不仅可以处理高斯噪声,还可以有效地处理泊松噪声等其他类型的噪声。

NL-Means算法的基本思想是,对于图像中的每一个像素,通过计算该像素周围区域与其他像素区域的相似性来进行去噪。相似性计算可以基于像素强度的差异,也可以使用特征向量来进行。NL-Means算法的基本原理如下:

  1. 相似性比较: 对于图像中的每一个像素,NL-Means算法首先会在图像的局部区域内搜索与该像素相似的区域。相似性的度量可以基于像素强度的差异,也可以使用特征向量来进行。

  2. 权重计算: 对于每一个相似区域,算法会计算一个权重值,该权重值表示了该相似区域与目标像素的相似性。相似性越高,权重值越大。

  3. 加权平均: 使用计算得到的权重值,NL-Means算法对所有相似区域的像素值进行加权平均,得到目标像素的估计值。

  4. 重复处理: 以上步骤对图像中的每一个像素都进行处理,以达到整体去噪的效果。

通过这种方式,NL-Means算法能够保留图像的细节信息,并在降低噪声水平的同时,避免了模糊效果。

def denoise_nl_means(image, h=10, hForColor=10, templateWindowSize=7, searchWindowSize=21):
    denoised_image = cv2.fastNlMeansDenoisingColored(image, None, h, hForColor, templateWindowSize, searchWindowSize)
    return denoised_image

噪音图片:

 NL-Means去噪后图片:

 能够看出NL-Means算法保留图像的细节信息且图片没有那么模糊。

总结

综上所述,图像去噪是图像处理领域中的重要任务,其目的是消除或减弱图像中的噪音,以使图像更清晰、更易分析。不同的去噪算法适用于不同类型和强度的噪音,因此在实际应用中需要根据具体情况选择合适的方法。同时,对于特定的图像处理任务,也可能需要结合多种去噪技术以获得最佳效果。在实践中,通过理解各种去噪算法的原理和特性,可以更好地应用它们来解决实际问题,从而提升图像处理的质量和效率。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/105471.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Python Django 的微博舆论、微博情感分析可视化系统(V2.0)

文章目录 1 简介2 意义3 技术栈Django 4 效果图微博首页情感分析关键词分析热门评论舆情预测 5 推荐阅读 1 简介 基于Python的微博舆论分析,微博情感分析可视化系统,项目后端分爬虫模块、数据分析模块、数据存储模块、业务逻辑模块组成。 Python基于微博…

pdf转jpg的方法【ps和工具方法】

pdf转jpg的方法: 1.photoshop办法: pdf直接拖入ps中,另存为*.Jpg文件即可 另外注意的时候,有时候别人给你pdf文件中包含你需要的jpg文件,千万不要截图进入ps中,直接把文件拖入ps中,这样的文件…

常用应用安装教程---在centos7系统上安装JDK8

在centos7系统上安装JDK8 1:进入oracle官网下载jdk8的tar.gz包: 2:将下载好的包上传到每个服务器上: 3:查看是否上传成功: [rootkafka01 ~]# ls anaconda-ks.cfg jdk-8u333-linux-x64.tar.gz4&#xf…

PHP 数据库交互优化,根据传参查询

接上文 修改以下内容 将查询的 uid 改为 username,同时在 user 和 message 两张表中查询 $sql "select m.id,u.username,m.title,m.content from user u,message m where u.idm.uid;"根据 message 中的 id 查询,形式为 http://127.0.0.1/m…

华为终端智能家居应用方案

PLC-IoT概述 华为智能PLC-IoT工业物联网系列通信模块是基于电力线宽带载波技术的产品,实现数据在电力线上双向、高速、稳定的传输,广泛适用于电力、交通、工业制造、智能家居等领域,PLC-IoT通信模块包含头端和尾端两种类型,头端配…

如何在用pip配置文件设置HTTP爬虫IP

目录 一、pip配置文件概述 二、设置HTTP爬虫IP的步骤 三、注意事项和技巧 总结 在进行网络爬虫的开发过程中,更换IP地址是一种常见的需求,这是为了防止被目标网站识别并封禁。代理IP是一种常用的解决方案,通过代理服务器转发请求&#xf…

红米电脑硬盘剪切

Redmi R14 2023版固态硬盘剪切 工具准备操作结尾语 首先要说明,本文所说的操作不一定适合你的电脑,因为电子产品更新换代过快,你的硬盘不一定能剪切,在操作前一定要仔细观察硬盘的型号,是否为同款,我上了图…

element-ui的日历组件el-calendar高度咋调小

最近项目首页有个空余 不知道放啥 打算放个日历card 充充位置, el-calendar日历组件的整体宽度可以用el-row el-col :gutter :span来控制自适应 但是官网文档没说高度咋缩小 细长一条好难看 自己尝试改了改element的样式没整出来 最后照着这位博主的方法改是好使滴…

FPGA设计时序约束七、设置时钟不确定约束

一、背景 在之前的时序分析中,通常是假定时钟是稳定理想的,即设置主时钟周期后按照周期精确的进行边沿跳动。在实际中,时钟是非理想存在较多不确定的影响,存在时延和波形的变化,要准确分析时序也需将其考虑进来&#x…

Webpack 基础以及常用插件使用方法

目录 一、前言二、修改打包入/出口配置步骤 三、常用插件使用html-webpack-plugin打包 CSS 代码提取 CSS 代码优化压缩过程打包 less 代码打包图片文件 一、前言 本质上,Webpack 是一个用于现代 JavaScript 应用程序的 静态模块打包工具。当 webpack 处理应用程序时…

VSCode汉化设置

扩展中搜索并安装 Chinese… 快捷键 commandshiftp,输入框中输入config,选择Config Display Language 选择zh-cn,重启vscode

SpringBoot 分布式验证码登录方案

前言 为了防止验证系统被暴力破解,很多系统都增加了验证码效验,比较常见的就是图片二维码,业内比较安全的是短信验证码,当然还有一些拼图验证码,加入人工智能的二维码等等,我们今天的主题就是前后端分离的…

【MyBatis Plus】初识 MyBatis Plus,在 Spring Boot 项目中集成 MyBatis Plus,理解常用注解以及常见配置

文章目录 一、初识 MyBatis Plus1.1 MyBatis Plus 是什么1.2 MyBatis Plus 和 MyBatis 的区别 二、在 Spring Boot 项目中集成 MyBatis Plus2.1 环境准备2.2 引入 MyBatis Plus 依赖2.3 定义 Mapper2.4 测试 MyBatis Plus 的使用 三、MyBatis Plus 常用注解3.1 为什么需要注解3…

安装Redis使用make命令报异常

报错信息如下: 解决方案: 安装 gcc yum install gcc-c -y清空编译失败残留文件: make distclean使用 make 命令进行编译: make -j 2 PREFIX/usr/local/redis install

Jmeter性能 —— 事务控制器

统计性能测试结果一定会关注TPS,TPS表示:每秒处理事务数,JMeter默认每个事务对应一个请求。我们可以用逻辑控制器中的事务控制器将多个请求统计为一个事务。 1、添加事务控制器 2、事务控制器参数说明 Generate parent sample:如…

编写虚拟UART驱动程序-框架

一、框架回顾 二、编写UART驱动要做的事 1.注册一个uart_driver 2. 对于每一个port,都会在设备树里面有一个节点 3. 设备树里的节点和platform_driver节点匹配 4. 当platform_dirver的probe函数被调用时,可以获得设备树里的信息,从而把每个串…

Vue3 封装 element-plus 图标选择器

一、实现效果 效果一: 效果二: 效果一的这个是把全部的icon图标都让它显示出来,让我们自己选择说选图标 二、效果一实现步骤 2.1. 全局注册 icon 组件 // main.ts import App from ./App.vue; import { createApp } from vue; import * a…

代码随想录算法训练营第2天| 977有序数组的平方、209长度最小的子数组。

JAVA代码编写 977. 有序数组的平方 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释&…

PDF编辑工具Acrobat Pro DC 2023中文

Acrobat Pro DC 2023是一款全面、高效的PDF编辑和管理软件。它提供了丰富的PDF编辑功能,如创建、编辑、合并、分割、压缩、旋转、裁剪等,让用户可以轻松处理各种PDF文档。同时,该软件还具有智能的PDF处理技术,可以自动识别和修复P…

中国铁路线路数据,分为高速铁路和普通铁路,有shp格式和xlsx格式,免费下载

数据地址: 中国铁路线路数据https://www.xcitybox.com/datamarketview/#/Productpage?id274 基本信息. 数据名称: 中国铁路线路数据 数据格式: ShpXlsx 数据时间: 2018年 数据几何类型: 线 数据坐标系: WGS84坐标系 数据来源:网络公开数据 数据…