Pytorch整体工作流程代码详解(新手入门)

一、前言

本文详细介绍Pytorch的基本工作流程及代码,以及如何在GPU上训练模型(如下图所示)包括数据准备、模型搭建、模型训练、评估及模型的保存和载入。
在这里插入图片描述
适用读者:有一定的Python和机器学习基础的深度学习/Pytorch初学者。

本文内容:

  • 一、前言
  • 二、环境配置说明
  • 三、步骤详细说明
    • 1. 数据准备 (Data Pre)
      • 1.1 导入包
      • 1.2 生成数据集 & 数据集切分
      • 1.3 数据可视化
    • 2. 模型搭建(Building Model)
      • 2.1 创建模型
    • 2.2 训练前的模型表现
    • 3. 模型训练(Training Model)
      • 3.1 损失函数和优化器(Loss function & optimizer)
      • 3.2 训练&测试循环(Training/Testing Loop)
    • 4. 模型评估
    • 5. 保存和导入模型
      • 5.1 保存/导出模型
      • 5.2 读取/导入模型
        • 5.2.1 模型导入
        • 5.2.2 检验导入模型
  • 四、步骤汇总(在GPU上运算)
    • 1. 数据准备
    • 2. 建立Pytorch线性模型
    • 3. 模型训练
    • 4. 模型评估
    • 5. 保存&载入模型
  • 五、核心代码总结
    • 1. 模型搭建
    • 2. 模型训练
    • 3. 模型评估
    • 4. 模型保存和载入
    • 5.GPU设置相关
  • 参考资料

二、环境配置说明

整体代码在Colab上运行 (需要科学上网),设置为GPU。

GPU 设置步骤如下:
在这里插入图片描述
在这里插入图片描述

三、步骤详细说明

1. 数据准备 (Data Pre)

1.1 导入包

import torch
from torch import nn # 该模块提供了许多用于定义神经网络层函数和类。
import matplotlib.pyplot as plt

# 检查版本
torch.__version__

1.2 生成数据集 & 数据集切分

# 设置初始参数
weight = 0.7
bias = 0.3

# 创建数据
start = 0
end = 1
step = 0.02
X = torch.arange(start, end, step).unsqueeze(dim=1)
y = weight * X + bias

# 数据集切分
train_split = int(0.8 * len(X))
X_train, y_train = X[:train_split], y[:train_split]
X_test, y_test = X[train_split:], y[train_split:]

len(X_train), len(y_train), len(X_test), len(y_test)

1.3 数据可视化

# 自定义一个画图功能
def plot_predictions(train_data=X_train,
           train_labels=y_train,
           test_data=X_test,
           test_labels=y_test,
           predictions=None):

  plt.figure(figsize=(10, 7))
  plt.scatter(train_data, train_labels, c="b", s=4, label="Training data") # 蓝色为训练集
  plt.scatter(test_data, test_labels, c="g", s=4, label="Testing data") # 绿色是测试集

  if predictions is not None:
    #红色标预测数据
    plt.scatter(test_data, predictions, c="r", s=4, label="Predictions")
  plt.legend(prop={"size": 14});

#查看数据图
plot_predictions();

在这里插入图片描述

2. 模型搭建(Building Model)

PyTorch模块作用
torch.nn包含了计算图的所有构建模块(本质上是按特定方式执行的一系列计算)。
torch.nn.Parameter存储可以与nn.Module一起使用的张量。如果requires_grad=True,则会自动计算梯度(用于通过梯度下降更新模型参数),通常称为“autograd”。
torch.nn.Module所有神经网络模块的基类,所有神经网络的构建模块都是它的子类。如果你在 PyTorch 中构建神经网络,你的模型应该是nn.Module的子类。需要实现一个forward()方法。
torch.optim包含各种优化算法(告诉存储在nn.Parameter中的模型参数如何改变以改进梯度下降,从而减少损失)。
def forward()所有nn.Module子类都需要一个forward()方法,它定义了在传递给特定nn.Module的数据上将进行的计算(例如上面的线性回归公式)。

如果上述内容听起来复杂,可以这样理解,几乎所有 PyTorch 神经网络中的组件都来自torch.nn

  • nn.Module 包含更大的构建模块(层)
  • nn.Parameter 包含较小的参数,如权重和偏差(将它们组合在一起以创建nn.Module
  • forward() 告诉较大的模块如何对输入(充满数据的张量)进行计算
  • torch.optim 包含优化方法,用于改进nn.Parameter中的参数以更好地表示输入数据

2.1 创建模型

# 创建一个线性回归模型类
class LinearRegressionModel(nn.Module):
    def __init__(self):
        super().__init__()
        #权重参数
        self.weights = nn.Parameter(torch.randn(1, # 从随机权重开始(这将随着模型学习而调整)
                      dtype=torch.float), # PyTorch 默认使用 float32
                      requires_grad=True) # <- can we update this value with gradient descent?)
        #偏差参数
        self.bias = nn.Parameter(torch.randn(1,
                    dtype=torch.float),
                    requires_grad=True)

    # forward 方法定义了模型中的计算过程
    def forward(self, x: torch.Tensor) -> torch.Tensor: # "x" 是输入数据(例如训练/测试特征)
        return self.weights * x + self.bias # 这是线性回归公式(y = m*x + b)

requires_grad=True 在这里怎么理解?

  • requires_grad 是一个用于跟踪张量是否需要计算梯度的标志。

  • 如果这个张量需要计算梯度,则为 True,否则为 False。

  • 在例子中,设置 requires_grad=True
    会告诉PyTorch跟踪权重和偏差的梯度,并在进行反向传播和优化时使用这些梯度来更新它们的值,以便最小化模型的训练误差。

  • 参考链接:https://pytorch.org/docs/stable/generated/torch.Tensor.requires_grad.html

2.2 训练前的模型表现

随机初始化模型参数的值,并且查看训练前,该模型的表现情况

# 设置种子,因为 nn.Parameter 是随机初始化的
torch.manual_seed(42) # 如果注释掉这行,每次重复运行的结果会不一样

# 创建一个模型model_0
model_0 = LinearRegressionModel()

# 检查nn.Module 中的 nn.Parameter
list(model_0.parameters())

在这里插入图片描述

# 列出模型中的参数
model_0.state_dict()

在这里插入图片描述

# 模型预测
with torch.inference_mode():
    y_preds = model_0(X_test)

# Note: 在老版本中可能会使用 torch.no_grad()
# with torch.no_grad():
#   y_preds = model_0(X_test)

# 查看预测结果
print(f"Number of testing samples: {len(X_test)}")
print(f"Number of predictions made: {len(y_preds)}")
print(f"Predicted values:\n{y_preds}")

在这里插入图片描述

plot_predictions(predictions=y_preds)

在这里插入图片描述

#查看预测结果偏差情况
y_test - y_preds

在这里插入图片描述

3. 模型训练(Training Model)

3.1 损失函数和优化器(Loss function & optimizer)

# 损失函数
loss_fn = nn.L1Loss() # MAE = L1Loss

# 优化器
optimizer = torch.optim.SGD(params=model_0.parameters(), lr=0.01)

优化器是什么?

  • 在机器学习中,优化器(optimizer)是用于最小化或最大化目标函数的算法。它们被用于调整模型中可调参数的值,以便使模型能够更好地拟合训练数据。
  • 优化器根据计算出的损失函数的梯度来更新模型参数。梯度指向损失函数增长最快的方向,因此优化器通过沿着梯度的相反方向更新模型参数,以便在训练过程中逐步减少损失函数的值。
  • 常见的优化器包括随机梯度下降(SGD)、动量优化器(Momentum)、AdaGrad、RMSprop、以及Adam 等。 每种优化器都有自己的更新规则和超参数,因此在选择优化器时需要考虑模型的特性以及训练数据的特点。

在上面代码中,参数如下所示:

  • torch.optim.SGD:这是一个使用随机梯度下降(Stochastic Gradient Descent,SGD)算法进行优化的优化器。
  • model.parameters():这是要优化的模型参数的列表。通过将模型的参数传递给优化器,优化器可以使用梯度下降算法来更新这些参数。
  • lr=0.01:这是学习率(learning rate)的值,它决定了每次更新模型参数时的步长大小。学习率越大,模型参数更新得越快,但可能会错过最优解;学习率越小,模型参数更新得越慢,但可能更接近最优解。

3.2 训练&测试循环(Training/Testing Loop)

对于训练循环,可以一共分成下面5个步骤:

步骤名称功能代码示例
1. 前向传播模型对所有训练数据进行一次计算,执行其forward()函数计算。model(x_train)
2 .计算损失将模型的输出(预测值)与实际值进行比较,并评估它们的误差程度。loss = loss_fn(y_pred, y_train)
3 . 清除梯度将优化器的梯度设置为零(它们默认会累积),以便可以针对特定训练步骤重新计算。optimizer.zero_grad()
4 . 对损失进行反向传播计算损失相对于每个需要更新的模型参数的梯度(每个参数都要设置requires_grad=True)。这就是所谓的反向传播,因此称为“向后”。loss.backward()
5 . 更新优化器(梯度下降根据损失梯度更新requires_grad=True的参数,以改进它们。optimizer.step()

注意!测试循环不包括执行反向传播(loss.backward())或更新优化器(optimizer.step()),这是因为在测试过程中模型的参数不会发生变化,它们已经被计算过了。在测试过程中,我们只对模型通过前向传递产生的输出感兴趣。

torch.manual_seed(42)

epochs=100

train_loss_values=[]
test_loss_values=[]
epoch_count=[]

for epoch in range(epochs):
  model_0.train() # 将模型置于训练模式

  #1.前向传播,在训练数据上进行前向传递,使用模型内部的 forward() 方法。
  y_pred=model_0(X_train)

  #2.计算损失
  loss=loss_fn(y_pred,y_train)

  #3.清除梯度,将有害器的梯度设置为0
  optimizer.zero_grad()

  #4.对损失进行反向传播
  loss.backward()

  #5.更新优化器
  optimizer.step()

  ## 测试

  model_0.eval # 将模型置于评估模式

  with torch.inference_mode():
    #1.在测试数据上进行钱箱传播
    test_pred=model_0(X_test)

    #2.计算损失
    # 预测结果采用 `torch.float` 数据类型,因此需要使用相同类型的张量。
    test_loss=loss_fn(test_pred,y_test.type(torch.float))

    #结果输出
    if epoch % 10==0:
      epoch_count.append(epoch)
      train_loss_values.append(loss.detach().numpy())
      test_loss_values.append(test_loss.detach().numpy())
      print(f"Epoch: {epoch} | MAE Train Loss: {loss} |MAE Test Loss:{test_loss}")

下面结果可以看出,通过10次训练之后,误差大大降低了。在这里插入图片描述

#损失结果可视化
plt.plot(epoch_count, train_loss_values, label="Train loss")
plt.plot(epoch_count, test_loss_values, label="Test loss")
plt.title("Training and test loss curves")
plt.ylabel("Loss")
plt.xlabel("Epochs")
plt.legend();

在这里插入图片描述

# 输出学习后的参数
print("The model learned the following values for weights and bias:")
print(model_0.state_dict())
print("\nAnd the original values for weights and bias are:")
print(f"weights: {weight}, bias: {bias}")

在这里插入图片描述
虽然损失降低了,但是最终输出的参数和真实的还是有一定差异。

4. 模型评估

在使用PyTorch模型进行预测(也称为执行推断)时,有三件事需要记住:

  1. 将模型设置为评估模式(model.eval())。
  2. 使用with torch.inference_mode(): …。
  3. 所有预测都应该使用相同设备上的对象(例如,仅在GPU上使用数据和模型,或仅在CPU上使用数据和模型)。

前两项确保在训练过程中PyTorch在幕后使用的所有有用的计算和设置都被关闭(这会加快计算速度)。第三项确保不会遇到跨设备错误。

# 1. 将模型设置为评估模式
model_0.eval()

# 2. 设置torch.inference_mode():
with torch.inference_mode():
  # 3. 确保模型和数据在同一设备上进行计算
  # 在这个例子中,我们的数据和模型默认都在 CPU 上。
  # model_0.to(device)
  # X_test = X_test.to(device)
  y_preds = model_0(X_test)
  
y_preds

在这里插入图片描述

plot_predictions(predictions=y_preds)

在这里插入图片描述
和之前的图对比,预测结果大大提升。

5. 保存和导入模型

在实际训练过程中,我们可能会在Google Colab或带有GPU的本地计算机上训练模型,但最终希望将其导出到某种应用程序中供他人使用;或者,希望暂时保存模型的进度,并稍后加载它。

对于在PyTorch中保存和加载模型,有三种主要方法:

PyTorch方法功能
torch.save使用pickle将序列化对象保存到磁盘。可以使用torch.save保存模型、张量和各种其他Python对象,例如字典。
torch.load使用pickle的反序列化功能可以反序列化和加载已完成序列化的Python对象文件(如模型、张量或字典)到内存中。还可以设置要将对象加载到的设备(CPU、GPU等)。
torch.nn.Module.load_state_dict使用保存的state_dict()对象加载模型的参数字典(model.state_dict())。

参考指南:https://docs.python.org/3/library/pickle.html

5.1 保存/导出模型

torch.save(obj, f)语法介绍:

  • obj 是目标模型的参数 state_dict()
  • f 是保存路径
from pathlib import Path

# 1. 创建模型字典
MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents=True, exist_ok=True)

# 2. 创建模型保存路径
MODEL_NAME = "01_pytorch_workflow_model_0.pth" #保存格式以.pt或.pth后缀结尾
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

# 3. 保存模型参数
print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj=model_0.state_dict(), # 只保存state_dict();只保存训练后的模型参数
           f=MODEL_SAVE_PATH) 

5.2 读取/导入模型

5.2.1 模型导入

下面的代码中
直接在torch.nn.Module.load_state_dict()内部调用torch.load()

因为我们只保存了模型的state_dict(),它是一个包含学习参数的字典,而不是整个模型,

所以我们首先必须使用torch.load()加载参数state_dict(),然后将该state_dict()传递给模型。

为什么不保存整个模型呢?
虽然保存整个模型(包含参数)看起来更加直接简单,但这种方法在重构后会引起各种方式的中断。

  • 官方解释如下:
    The disadvantage of this approach is that the serialized data is bound to the specific classes and the exact directory structure used when the model is saved. The reason for this is because pickle does not save the model class itself. Rather, it saves a path to the file containing the class, which is used during load time. Because of this, your code can break in various ways when used in other projects or after refactors.

因此,我们使用灵活的方法仅保存和加载state_dict(),它基本上是一个模型参数的字典。

  • 参考指南:https://pytorch.org/tutorials/beginner/saving_loading_models.html

下面我们通过创建LinearRegressionModel的另一个实例来测试一下,它是torch.nn.Module的子类,因此具有内置的load_state_dict()方法。

# 加载模型
loaded_model_0 = LinearRegressionModel()

# 加载保存的state_dict(这将用训练好的权重参数更新模型)
loaded_model_0.load_state_dict(torch.load(f=MODEL_SAVE_PATH))
5.2.2 检验导入模型
# 1. 模型调为测试模式
loaded_model_0.eval()

# 2. 预测结果
with torch.inference_mode():
    loaded_model_preds = loaded_model_0(X_test) 

# 3. 对比结果:判断原预测结果是否和导入模型的预测结果一致
y_preds == loaded_model_preds

在这里插入图片描述

四、步骤汇总(在GPU上运算)

import torch
from torch import nn 
import matplotlib.pyplot as plt

# torch.__version__```

# 设置设备为GPU(如果可用),否则为CPU。
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

1. 数据准备

weight = 0.7
bias = 0.3

start = 0
end = 1
step = 0.02

X = torch.arange(start, end, step).unsqueeze(dim=1) 
y = weight * X + bias 
X[:10], y[:10]

# Split data
train_split = int(0.8 * len(X))
X_train, y_train = X[:train_split], y[:train_split]
X_test, y_test = X[train_split:], y[train_split:]

len(X_train), len(y_train), len(X_test), len(y_test)

2. 建立Pytorch线性模型

这里我们直接使用 nn.Linear(in_features, out_features) 构建模型。

其中,in_features 是输入数据的维度数量,而 out_features 是输出的维度数量。

在我们的例子中,这两者都是 1,因为我们的数据每个标签(y)有 1 个输入特征(X)。

在这里插入图片描述

class LinearRegressionModelV2(nn.Module):
    def __init__(self):
        super().__init__()
        # 使用nn.Linear() 
        self.linear_layer = nn.Linear(in_features=1,
                        out_features=1)
    # 定义forward
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.linear_layer(x)

torch.manual_seed(42)
model_1 = LinearRegressionModelV2()
model_1, model_1.state_dict()

在这里插入图片描述

# 检查现在的设备
next(model_1.parameters()).device

当前使用的是CPU在这里插入图片描述

# 设置设备为GPU(如果可用),否则为CPU。
device
model_1.to(device) # 设置设备
next(model_1.parameters()).device #再检查设备

已经转移到GPU上了在这里插入图片描述

3. 模型训练

# 损失函数和优化器
loss_fn = nn.L1Loss()
optimizer = torch.optim.SGD(params=model_1.parameters(), 
                            lr=0.01)

要注意把训练和测试数据都转移到GPU上面,因为上一步,我们已经把模型设置在GPU上了。

torch.manual_seed(42)
epochs = 1000

# 将数据放置在可用的设备上。
# 如果没有这样做,会出现错误(并非所有模型/数据都在设备上
X_train = X_train.to(device)
X_test = X_test.to(device)
y_train = y_train.to(device)
y_test = y_test.to(device)

for epoch in range(epochs):
    model_1.train()
    y_pred = model_1(X_train)
    loss = loss_fn(y_pred, y_train)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    ### Testing
    model_1.eval() 
    with torch.inference_mode():
        test_pred = model_1(X_test)
        test_loss = loss_fn(test_pred, y_test)

    if epoch % 100 == 0:
        print(f"Epoch: {epoch} | Train loss: {loss} | Test loss: {test_loss}")

在这里插入图片描述

from pprint import pprint # pprint = pretty print, see: https://docs.python.org/3/library/pprint.html
print("The model learned the following values for weights and bias:")
pprint(model_1.state_dict())
print("\nAnd the original values for weights and bias are:")
print(f"weights: {weight}, bias: {bias}")

在这里插入图片描述
从参数结果可见,模型的参数(0.6968,0.3025)已经基本和实际参数(0.7,0.3)一致了。

4. 模型评估

在查看结果时,也要注意数据的位置,比如plot_predictions(predictions=y_preds)会因为数据不在CPU上而失效。

model_1.eval()
with torch.inference_mode():
    y_preds = model_1(X_test)
y_preds

在这里插入图片描述

# plot_predictions(predictions=y_preds) # 原来的代码失效了,因为现在数据不在CPU上

# 将数据放到CPU上并且作图
plot_predictions(predictions=y_preds.cpu())

在这里插入图片描述
现在模型的预测结果和实际一致。

5. 保存&载入模型

导出和导入的方法基本没变,但是要注意导入时,模型所在的位置。

5.1 模型导出

# 导出
from pathlib import Path

MODEL_PATH = Path("models")
MODEL_PATH.mkdir(parents=True, exist_ok=True)

MODEL_NAME = "01_pytorch_workflow_model_1.pth"
MODEL_SAVE_PATH = MODEL_PATH / MODEL_NAME

print(f"Saving model to: {MODEL_SAVE_PATH}")
torch.save(obj=model_1.state_dict(),f=MODEL_SAVE_PATH)

5.2 模型导入

#导入
loaded_model_1 = LinearRegressionModelV2()

loaded_model_1.load_state_dict(torch.load(MODEL_SAVE_PATH))

# 将模型放到目标设备上
loaded_model_1.to(device)

print(f"Loaded model:\n{loaded_model_1}")
print(f"Model on device:\n{next(loaded_model_1.parameters()).device}")

在这里插入图片描述
模型在CPU上。

5.3 导入模型检查

# 导入模型预测结果检查
loaded_model_1.eval()
with torch.inference_mode():
    loaded_model_1_preds = loaded_model_1(X_test)

#检查载入模型是否和原模型结果一致
y_preds == loaded_model_1_preds

预测结果一致
在这里插入图片描述

五、核心代码总结

1. 模型搭建

  • nn.Module 包含更大的构建模块(层)
  • nn.Parameter 包含较小的参数,如权重和偏差(将它们组合在一起以创建nn.Module
  • forward() 告诉较大的模块如何对输入(充满数据的张量)进行计算
  • torch.optim 包含优化方法,用于改进nn.Parameter中的参数以更好地表示输入数据

2. 模型训练

步骤名称功能代码示例
1. 前向传播模型对所有训练数据进行一次计算,执行其forward()函数计算。model(x_train)
2 .计算损失将模型的输出(预测值)与实际值进行比较,并评估它们的误差程度。loss = loss_fn(y_pred, y_train)
3 . 清除梯度将优化器的梯度设置为零(它们默认会累积),以便可以针对特定训练步骤重新计算。optimizer.zero_grad()
4 . 对损失进行反向传播计算损失相对于每个需要更新的模型参数的梯度(每个参数都要设置requires_grad=True)。这就是所谓的反向传播,因此称为“向后”。loss.backward()
5 . 更新优化器(梯度下降根据损失梯度更新requires_grad=True的参数,以改进它们。optimizer.step()

3. 模型评估

  1. 将模型设置为评估模式(model.eval())。
  2. 使用with torch.inference_mode(): …。

4. 模型保存和载入

PyTorch方法功能
torch.save使用pickle将序列化对象保存到磁盘。可以使用torch.save保存模型、张量和各种其他Python对象,例如字典。
torch.load使用pickle的反序列化功能可以反序列化和加载已完成序列化的Python对象文件(如模型、张量或字典)到内存中。还可以设置要将对象加载到的设备(CPU、GPU等)。
torch.nn.Module.load_state_dict使用保存的state_dict()对象加载模型的参数字典(model.state_dict())。

5.GPU设置相关

# 设置设备为GPU(如果可用),否则为CPU
device = "cuda" if torch.cuda.is_available() else "cpu"

# 将数据放置在可用的设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)

# 将模型移动到设备
model.to(device)

参考资料

Pytorch流程:https://www.learnpytorch.io/01_pytorch_workflow/
cheatsheet: https://pytorch.org/tutorials/beginner/ptcheat.html
Pickle介绍文档: https://docs.python.org/3/library/pickle.html
模型保存载入教程:https://pytorch.org/tutorials/beginner/saving_loading_models.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/104548.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【FPGA零基础学习之旅#17】搭建串口收发与储存双口RAM系统

&#x1f389;欢迎来到FPGA专栏~搭建串口收发与储存双口RAM系统 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;FPGA学习之旅 文章作者技术和水平有限&#xff0c;如果文中出现错误&#xff0…

ARM 汇编指令 orreq 的使用

orreq 阅读代码时&#xff0c;发现有个【组合指令】 orreq&#xff0c; orr 一般是 OR&#xff0c;也就是或操作&#xff0c;后面加个 eq 表示什么呢&#xff1f; 比如下面的代码&#xff1a;前面一个操作&#xff0c; tst&#xff0c;好像没做实际的操作&#xff0c;可能影响…

Leetcode—7.整数反转【中等】

2023每日刷题&#xff08;十&#xff09; Leetcode—7.整数反转 关于为什么要设long变量 参考自这篇博客 long可以表示-2147483648而且只占4个字节&#xff0c;所以能满足题目要求 复杂逻辑版实现代码 int reverse(int x){int arr[32] {0};long y;int flag 1;if(x <…

【人脸检测 FPS 1000+】ubuntu下libfacedetection tensorrt部署

TensorRT系列之 Windows10下yolov8 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov8 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov7 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov6 tensorrt模型加速部署 TensorRT系列之 Linux下 yolov5 tensorrt模型加速…

4G通信电子标签

4G移动通信系统 4G最大的数据传输速率超过100Mbit/s&#xff0c;这个速率是移动电话数据传输速率的1万倍&#xff0c;也是3G移动电话速率的50倍。4G手机可以提供高性能的汇流媒体内容&#xff0c;并通过ID应用程序成为个人身份鉴定设备。它也可以接受高分辨率的电影和电视节目…

给运行中的docker容器挂载目录——筑梦之路

使用场景 对于一个已经运行的容器&#xff0c;如果后续需要新挂载一个目录怎么办&#xff1f;为什么不能重新创建一个容器&#xff1f; 容器内可能安装过很多东西&#xff0c;很费时&#xff0c;如果重新创建一个容器再挂载&#xff0c;还得重新安装很多东西&#xff0c;非常费…

Qt5 Python-docx库的使用,Qt python混合编程,qt 读写word,不依赖office

解决方案的选择 参考&#xff1a; https://www.jianshu.com/p/be68884849c3 因为项目要求不能使用模板方案&#xff0c;不能依赖Office&#xff0c;网上找了一些解决方案进行调研&#xff0c;以下几个方案&#xff1a; OpenOffice: 兼容性差&#xff0c;集成调用难度大LibOffi…

大数据-Storm流式框架(三)--Storm搭建教程

一、两种搭建方式 1、storm单节点搭建 2、完全分布式搭建 二、storm单节点搭建 准备 下载地址&#xff1a;Index of /dist/storm 1、环境准备&#xff1a; Java 6 Python 2.6.6 2、上传、解压安装包 3、在storm目录中创建logs目录 mkdir logs 启动 ./storm help …

数据库安全定义以及重要性简单讲解

数据库安全定义 数据库安全指的是对数据库进行保护&#xff0c;以确保其数据的机密性、完整性和可用性&#xff0c;并防止非法访问、篡改、破坏、泄露等安全威胁。一般包括访问控制、数据加密、审计和监控、数据备份、漏洞修补、网络安全等方面。 数据库安全的重要性 1、数据…

不希望你的数据在云中?关闭iPhone或Mac上的iCloud

​如果你不想使用iCloud&#xff0c;可以很容易地从设备设置中选择退出并关闭它。当你禁用iCloud时&#xff0c;它会删除该设备对iCloud的访问&#xff0c;但不会删除苹果服务器上的任何数据。我们将在本文末尾向你展示如何做到这一点。 注销iCloud并完全禁用它 如果你根本不…

视频相关学习笔记

YUV 和rgb一样是一种表示色彩的格式&#xff0c;Y表示亮度&#xff0c;UV表示色度&#xff08;U是蓝色投影&#xff0c;V是红色投影&#xff09;&#xff0c;只有Y就是黑白的&#xff0c;所以这个格式的视频图片可以兼容黑白电视&#xff0c;所以彩色电视使用的都是YUV 存储方…

Vue 2 生命周期与 Vue 3 生命周期:介绍与差别对比

目录 引言&#xff1a; 一、Vue 2 生命周期介绍&#xff1a; 二、Vue 3 生命周期介绍&#xff1a; 注册周期钩子​ 生命周期图示 生命周期 三、Vue 2 生命周期与 Vue 3 生命周期的差别对比&#xff1a; 引言&#xff1a; Vue.js 是一款流行的 JavaScript 框架&#xff0…

蓝桥杯每日一题2023.10.22

题目描述 灵能传输 - 蓝桥云课 (lanqiao.cn) 题目分析 发现每一次的灵能传输都是对前缀和s[i - 1]和s[i]的一次交换 我们发现只剩下s1没有相减&#xff0c;在这里我们可以添加一个为0的s0&#xff0c;使整个式子表示完整 故为求max(s[i], s[i - 1])的最小值&#xff08;发现…

Linux笔记之diff工具软件P4merge的使用

Linux笔记之diff工具软件P4merge的使用 code review! 文章目录 Linux笔记之diff工具软件P4merge的使用1.安装和配置2.使用&#xff1a;p4merge a.cc b.cc3.配置git 参考博文: Ubuntu Git可视化比较工具 P4Merge 的安装/配置及使用 1.安装和配置 $ wget https://cdist2.per…

避雷!又有2本期刊被标记“On Hold”!含中科院2区(TOP),共8本有风险!

期刊动态&#xff1a;新增2本期刊“On Hold” 最新&#xff0c;又有2本期刊被科睿唯安标记为「On Hold」&#xff01;这2本期刊分别为MIGRATION LETTERS和REVISTA DE GESTAO E SECRETARIADO-GESEC。 目前科睿唯安官网&#xff1a;共有8本期刊被标记为「On Hold」&#xff0c;…

http代理IP它有哪些应用场景?如何提升访问速度?

随着互联网的快速发展&#xff0c;越来越多的人开始关注网络速度和安全性。其中&#xff0c;代理IP技术作为一种有效的网络加速和安全解决方案&#xff0c;越来越受到人们的关注。那么&#xff0c;http代理IP有哪些应用场景&#xff1f;又如何提升访问速度呢&#xff1f; 一、h…

游戏研发的解决方案有哪些?

游戏研发的解决方案可以根据不同的需求和情境而有所不同&#xff0c;以下是一些常见的游戏研发解决方案&#xff1a; 游戏引擎&#xff1a; 游戏引擎是游戏研发的基础&#xff0c;它提供了开发游戏所需的核心功能&#xff0c;如图形渲染、物理引擎、音效管理、动画等。一些流行…

c++构造函数

目录 构造函数1、概念2、为什么使用构造函数3、构造函数的特性4、番外 构造函数 1、概念 构造函数是一个特殊的成员函数&#xff0c;名字与类名相同,创建类类型对象时由编译器自动调用&#xff0c;以保证每个数据成员都有 一个合适的初始值&#xff0c;并且在对象整个生命周期…

蓝桥杯(修建灌木 C++)

思路&#xff1a;到两边的距离&#xff0c;取大的一端&#xff1b;因为会来回循环&#xff0c;所以需要乘2。 #include <iostream> using namespace std; int main() {int n;cin>>n;for(int i1;i<n;i){cout<<max(i - 1,n - i) * 2<<endl;}return 0;…

Luckyexcel 加载 springboot 后台返回的 excel 文件并显示

&#x1f451; 博主简介&#xff1a;知名开发工程师 &#x1f463; 出没地点&#xff1a;北京 &#x1f48a; 2023年目标&#xff1a;成为一个大佬 ——————————————————————————————————————————— 版权声明&#xff1a;本文为原创文…