基于YOLOv8模型和UA-DETRAC数据集的车辆目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型和UA-DETRAC数据集的车辆目标检测系统可用于日常生活中检测与定位汽车(car)、公共汽车(bus)、面包车(vans)等目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于UA-DETRAC数据集的车辆目标检测模型,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的UA-DETRAC数据集标注了汽车(car)、公共汽车(bus)、面包车(vans)和其他(others)这四个类别,数据集总计10900张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的人体摔倒行为检测识别数据集包含训练集8639张图片,验证集2231张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/104385.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop3教程(三十一):(生产调优篇)异构存储

文章目录 (157)异构存储概述概述异构存储的shell操作 (158)异构存储案例实操参考文献 (157)异构存储概述 概述 异构存储,也叫做冷热数据分离。其中,经常使用的数据被叫做是热数据&…

听GPT 讲Rust源代码--library/std(2)

File: rust/library/std/src/sys_common/wtf8.rs 在Rust源代码中,rust/library/std/src/sys_common/wtf8.rs这个文件的作用是实现了UTF-8编码和宽字符编码之间的转换,以及提供了一些处理和操作UTF-8编码的工具函数。 下面对这几个结构体进行一一介绍&…

kibana监控

采取方式 Elastic Agent :更完善的功能 Metricbeat:轻量级指标收集(采用) 传统收集方法:使用内部导出器收集指标,已不建议 安装 metricbeat Download Metricbeat • Ship Metrics to Elasticsearch | E…

使用element-UI Cascader组件,实现第一级单选选,第二级,第三级,子级可以多选

最近开发过程中,遇到需求测一个需求,就是级联选择器,需要多选;但是第一级是单选; 既要单选又要复选。参照网上内容,自己整理了一下功能实现; 如下图: 思路:1.把第一层的…

华为昇腾NPU卡 大模型LLM ChatGLM2模型推理使用

参考:https://gitee.com/mindspore/mindformers/blob/dev/docs/model_cards/glm2.md#chatglm2-6b 1、安装环境: 昇腾NPU卡对应英伟达GPU卡,CANN对应CUDA底层; mindspore对应pytorch;mindformers对应transformers 本…

USB学习(2):USB端点和传输协议(数据包、事物)详解

接着上一篇文章USB学习(1):USB基础之接口类型、协议标准、引脚分布、架构、时序和数据格式,继续介绍一下USB的相关知识。 文章目录 1 USB端点(Endpoints)1.1 基本知识1.2 四种端点 2 传输协议2.1 数据包类型2.1.1 令牌数据包(Token packets)2.1.2 数据数…

学习笔记:tarjan

tarjan 引入 Robert Tarjan,计算机科学家,以 LCA、强连通分量等算法而闻名。Tarjan 设计了求解的应用领域的广泛有效的算法和数据结构。他以在数据结构和图论上的开创性工作而闻名,他的一些著名的算法有 Tarjan 最近公共祖先离线算法&#…

[Unity]给场景中的3D字体TextMesh增加描边方案二

如图所示仅支持图片内的/*数字 下面是资源

边缘计算:云计算的延伸

云计算已经存在多年,并已被证明对大大小小的企业都有好处;然而,直到最近边缘计算才变得如此重要。它是指发生在网络边缘的一种数据处理,更接近数据的来源地。 这将有助于提高效率并减少延迟以及设备和云之间的数据传输成本。边缘…

2023年中国汽车塑料模具市场规模、竞争格局及行业趋势分析[图]

汽车注塑模具主要用来制造汽车内外饰件以及座椅等其他塑料零部件,其中又以汽车内外饰件模具最多。汽车内外饰件主要由各类塑料、表皮、织物或复合材料制成,用到的模具主要是塑料模具。从现代汽车使用的材料来看,无论是外装饰件、内装饰件&…

地面文物古迹保护方案,用科技为文物古迹撑起“智慧伞”

一、行业背景 当前,文物保护单位的安防系统现状存在各种管理弊端,安防系统没有统一的平台,系统功能不足、建设标准不同,产品和技术多样,导致各系统独立,无法联动,形成了“信息孤岛”。地面文物…

VMware Ubuntu 关闭自动更新

##1. VMware 17Pro,ubuntu16.04 关闭自动更新 1.1 编辑–》 首选项–》更新–》启动时检查产品更新 2. 这里关了还不够,第二天打开的时候还是提醒系统更新,需要关闭另外的地方 3. 关闭更新检查,默认的是隔天检查一次,…

基于springboot实现就业信息管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现就业信息管理系统演示 摘要 随着信息化时代的到来,管理系统都趋向于智能化、系统化,就业信息管理系统也不例外,但目前国内仍都使用人工管理,市场规模越来越大,同时信息量也越来越庞大,人…

【强烈推荐】视频转gif、图片拼gif,嘎嘎好用,免费免费真的免费,亲测有效,无效过来打我

问题描述 最近遇到一个需求是需要将视频生成gif,这个看上去不是很难,所以有了以下的解决办法 解决办法 首先想到的当然是自己写一个,用了两套代码: from moviepy.editor import *# 读取视频文件 video_clip VideoFileClip(&quo…

1221. 四平方和--(暴力,二分)

题目&#xff1a; 1221. 四平方和 - AcWing题库 思路1&#xff1a;暴力 暴力枚举 1.枚举顺序为从a到c&#xff0c;依次增大。 2.tn-a*a-b*b-c*c&#xff0c;求得dsqrt(t) 3.判断求出的d是否成立。d要求&#xff1a;d*dt&&d>c #include<iostream> #include&…

MySQL数据库(四)

文章目录 MySQL数据库一、外键外键前戏外键关系外键字段的建立建立外键时注意事项 二、表关系多对多三、表关系一对一四、多表查询思路五、连表查询操作六、Navicat可视化软件 MySQL数据库 一、外键 外键前戏 我们建立一张员工表id name age dep_name dep_desc1.表不清晰(现在…

Kubernetes(K8S)快速搭建typecho个人博客

Kubernetes&#xff08;K8S&#xff09;快速搭建typecho个人博客 1、准备工作 K8S集群环境&#xff0c;搭建教程参考腾讯云Lighthouse组建跨地域Kubernetes集群 K8S集群面板&#xff0c;搭建教程参考Kubernetes集群管理面板的安装及使用 - 青阳のblog-一个计算机爱好者的个人…

FFmpeg编译安装(windows环境)以及在vs2022中调用

文章目录 下载源码环境准备下载msys换源下载依赖源码位置 开始编译编译x264编译ffmpeg 在VS2022写cpp调用ffmpeg 下载源码 直接在官网下载压缩包 这个应该是目前&#xff08;2023/10/24&#xff09;最新的一个版本。下载之后是这个样子&#xff1a; 我打算添加外部依赖x264&a…

为啥外行都觉得程序员的代码不值钱?

点击下方“JavaEdge”&#xff0c;选择“设为星标” 第一时间关注技术干货&#xff01; 免责声明~ 任何文章不要过度深思&#xff01; 万事万物都经不起审视&#xff0c;因为世上没有同样的成长环境&#xff0c;也没有同样的认知水平&#xff0c;更「没有适用于所有人的解决方案…

【Java 进阶篇】Java Servlet 执行原理详解

Java Servlet 是用于构建动态Web应用程序的关键组件之一。它允许开发者编写Java类来处理HTTP请求和生成HTTP响应&#xff0c;从而实现灵活、交互性强的Web应用。本篇博客将深入探讨Java Servlet的执行原理&#xff0c;适用于初学者&#xff0c;无需太多的先验知识。 什么是 Ja…