使用GoogleNet网络实现花朵分类

一.数据集准备

新建一个项目文件夹GoogleNet,并在里面建立data_set文件夹用来保存数据集,在data_set文件夹下创建新文件夹"flower_data",点击链接下载花分类数据集https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz,会下载一个压缩包,将它解压到flower_data文件夹下,执行"split_data.py"脚本自动将数据集划分成训练集train和验证集val。

 split.py如下:

import os
from shutil import copy, rmtree
import random


def mk_file(file_path: str):
    if os.path.exists(file_path):
        # 如果文件夹存在,则先删除原文件夹在重新创建
        rmtree(file_path)
    os.makedirs(file_path)


def main():
    # 保证随机可复现
    random.seed(0)

    # 将数据集中10%的数据划分到验证集中
    split_rate = 0.1

    # 指向你解压后的flower_photos文件夹
    cwd = os.getcwd()
    data_root = os.path.join(cwd, "flower_data")
    origin_flower_path = os.path.join(data_root, "flower_photos")
    assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)

    flower_class = [cla for cla in os.listdir(origin_flower_path)
                    if os.path.isdir(os.path.join(origin_flower_path, cla))]

    # 建立保存训练集的文件夹
    train_root = os.path.join(data_root, "train")
    mk_file(train_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(train_root, cla))

    # 建立保存验证集的文件夹
    val_root = os.path.join(data_root, "val")
    mk_file(val_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(val_root, cla))

    for cla in flower_class:
        cla_path = os.path.join(origin_flower_path, cla)
        images = os.listdir(cla_path)
        num = len(images)
        # 随机采样验证集的索引
        eval_index = random.sample(images, k=int(num*split_rate))
        for index, image in enumerate(images):
            if image in eval_index:
                # 将分配至验证集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(val_root, cla)
                copy(image_path, new_path)
            else:
                # 将分配至训练集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(train_root, cla)
                copy(image_path, new_path)
            print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing bar
        print()

    print("processing done!")


if __name__ == '__main__':
    main()

之后会在文件夹下生成train和val数据集,到此,完成了数据集的准备。

二.定义网络

新建model.py,参照GoogleNet的网络结构和pytorch官方给出的代码,对代码进行略微的修改即可,在他的代码里首先定义了三个类BasicConv2d、Inception、InceptionAux,即基础卷积、Inception模块、辅助分类器三个部分,接着定义了GoogleNet类,对上述三个类进行调用,完成前向传播。

pytorch官方示例GoogleNet代码

import warnings
from collections import namedtuple
from functools import partial
from typing import Any, Callable, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor


class GoogLeNet(nn.Module):
    def __init__(self, num_classes = 1000, aux_logits = True, transform_input = False, init_weights = True):
        super(GoogLeNet,self).__init__()

        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)   #3为输入通道数,64为输出通道数
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))   #自适应平均池化下采样,对于任意尺寸的特征向量,都得到1*1特征矩阵
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)

    def _transform_input(self, x):
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
        return x
        
    def forward(self, x):
        x = self._transform_input(x)

        # N x 3 x 224 x 224 ---- batch_size cahnnel height width
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
         # N x 512 x 14 x 14
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:
            return x, aux2, aux1
        return x


class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1), 
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1),  # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
            BasicConv2d(in_channels, pool_proj, kernel_size=1),
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)   #batch channel hetght width,在channel上拼接


class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x 1000 (num_classes)

        return x


class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)

if __name__ == "__main__":
    googlenet = GoogLeNet(num_classes = 3, aux_logits = True, transform_input = False, init_weights = True)
    in_data = torch.randn(1, 3, 224, 224)
    out = googlenet(in_data)
    print(out)

完成网络的定义之后,可以单独执行一下这个文件,用来验证网络定义的是否正确。如果可以正确输出,就没问题。

三.开始训练

 加载数据集

首先定义一个字典,用于用于对train和val进行预处理,包括裁剪成224*224大小,训练集随机水平翻转(一般验证集不需要此操作),转换成张量,图像归一化。

然后利用DataLoader模块加载数据集,并设置batch_size为32,同时,设置数据加载器的工作进程数nw,加快速度。

data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    # 获取数据集路径
    image_path = os.path.join(os.getcwd(), "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    # 加载数据集,准备读取
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),transform=data_transform["train"])
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])

    nw = min([os.cpu_count(), 32 if 32 > 1 else 0, 8])  # number of workers
    print(f'Using {nw} dataloader workers every process')
    # 加载数据集
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=nw)
    validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=32, shuffle=False, num_workers=nw)
    train_num = len(train_dataset)
    val_num = len(validate_dataset)
    print(f"using {train_num} images for training, {val_num} images for validation.") 

生成json文件

将训练数据集的类别标签转换为字典格式,并将其写入名为'class_indices.json'的文件中。

  1. train_dataset中获取类别标签到索引的映射关系,存储在flower_list变量中。
  2. 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict,其中键是原始类别标签,值是对应的索引。
  3. 使用json.dumps()函数将cla_dict转换为JSON格式的字符串,设置缩进为4个空格。
  4. 使用with open()语句以写入模式打开名为'class_indices.json'的文件,并将JSON字符串写入文件。
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 雏菊 蒲公英 玫瑰 向日葵 郁金香
    # 从训练集中获取类别标签到索引的映射关系,存储在flower_list变量
    flower_list = train_dataset.class_to_idx
    # 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file,将cla_dict转换为JSON格式的字符串
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

定义网络,开始训练

首先定义网络对象net,传入要分类的类别数为5,使用辅助分类器并初始化权重;在这里训练30轮,并使用train_bar = tqdm(train_loader, file=sys.stdout)来可视化训练进度条,loss计算采用了GoogleNet原论文的方法,进行加权计算,之后再进行反向传播和参数更新;同时,每一轮训练完成都要进行学习率更新;之后开始对验证集进行计算精确度,完成后保存模型。

    net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0003)
    sculer = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
    

    epochs = 30
    best_acc = 0.0
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            imgs, labels = data
            optimizer.zero_grad()
            logits, aux_logits2, aux_logits1 = net(imgs.to(device))
            loss0 = loss_function(logits, labels.to(device))
            loss1 = loss_function(aux_logits1, labels.to(device))
            loss2 = loss_function(aux_logits2, labels.to(device))
            loss = loss0 + loss1 * 0.3 + loss2 * 0.3
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = f"train epoch[{epoch+1}/{epochs}] loss:{loss:.3f}"

        sculer.step()

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_imgs, val_labels = val_data
                outputs = net(val_imgs.to(device))  # eval model only have last output layer
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net,"./googleNet.pth")

    print('Finished Training')

最后对代码进行整理,完整的train.py如下

import os
import sys
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import torch.optim as optim
from tqdm import tqdm

from model import GoogLeNet


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"using {device} device.")

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    # 获取数据集路径
    image_path = os.path.join(os.getcwd(), "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    # 加载数据集,准备读取
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),transform=data_transform["train"])
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])

    nw = min([os.cpu_count(), 32 if 32 > 1 else 0, 8])  # number of workers
    print(f'Using {nw} dataloader workers every process')
    # 加载数据集
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=nw)
    validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=32, shuffle=False, num_workers=nw)
    train_num = len(train_dataset)
    val_num = len(validate_dataset)
    print(f"using {train_num} images for training, {val_num} images for validation.") 

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 雏菊 蒲公英 玫瑰 向日葵 郁金香
    # 从训练集中获取类别标签到索引的映射关系,存储在flower_list变量
    flower_list = train_dataset.class_to_idx
    # 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file,将cla_dict转换为JSON格式的字符串
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)


    """如果要使用官方的预训练权重,注意是将权重载入官方的模型,不是我们自己实现的模型
    官方的模型中使用了bn层以及改了一些参数,不能混用
    import torchvision
    net = torchvision.models.googlenet(num_classes=5)
    model_dict = net.state_dict()
    # 预训练权重下载地址: https://download.pytorch.org/models/googlenet-1378be20.pth
    pretrain_model = torch.load("googlenet.pth")
    del_list = ["aux1.fc2.weight", "aux1.fc2.bias",
                "aux2.fc2.weight", "aux2.fc2.bias",
                "fc.weight", "fc.bias"]
    pretrain_dict = {k: v for k, v in pretrain_model.items() if k not in del_list}
    model_dict.update(pretrain_dict)
    net.load_state_dict(model_dict)"""
    net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0003)
    sculer = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
    

    epochs = 30
    best_acc = 0.0
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            imgs, labels = data
            optimizer.zero_grad()
            logits, aux_logits2, aux_logits1 = net(imgs.to(device))
            loss0 = loss_function(logits, labels.to(device))
            loss1 = loss_function(aux_logits1, labels.to(device))
            loss2 = loss_function(aux_logits2, labels.to(device))
            loss = loss0 + loss1 * 0.3 + loss2 * 0.3
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = f"train epoch[{epoch+1}/{epochs}] loss:{loss:.3f}"

        sculer.step()

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_imgs, val_labels = val_data
                outputs = net(val_imgs.to(device))  # eval model only have last output layer
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net,"./googleNet.pth")

    print('Finished Training')


if __name__ == '__main__':
    main()

四.模型预测

新建一个predict.py文件用于预测,将输入图像处理后转换成张量格式,img = torch.unsqueeze(img, dim=0)是在输入图像张量 img 的第一个维度上增加一个大小为1的维度,因此将图像张量的形状从 [通道数, 高度, 宽度 ] 转换为 [1, 通道数, 高度, 宽度]。然后加载模型进行预测,并打印出结果,同时可视化。

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import GoogLeNet


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img = Image.open("./2678588376_6ca64a4a54_n.jpg")
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    with open("./class_indices.json", "r") as f:
        class_indict = json.load(f)

    # create model
    model = GoogLeNet(num_classes=5, aux_logits=False).to(device)
    model=torch.load("/home/lm/GoogleNet/googleNet.pth")

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_class = torch.argmax(predict).numpy()

    print_result = f"class: {class_indict[str(predict_class)]}   prob: {predict[predict_class].numpy():.3}"
                                             
    plt.title(print_result)
    for i in range(len(predict)):
        print(f"class: {class_indict[str(i)]:10}   prob: {predict[i].numpy():.3}")
    plt.show()


if __name__ == '__main__':
    main()

预测结果

五.模型可视化

将生成的pth文件导入netron工具,可视化结果为

发现很不清晰,因此将它转换成多用于嵌入式设备部署的onnx格式

编写onnx.py

import torch
import torchvision
from model import GoogLeNet

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GoogLeNet(num_classes=5, aux_logits=False).to(device)
model=torch.load("/home/lm/GoogleNet/googleNet.pth")
model.eval()
example = torch.ones(1, 3, 244, 244)
example = example.to(device)
torch.onnx.export(model, example, "googleNet.onnx", verbose=True, opset_version=11)

 将生成的onnx文件导入,这样的可视化清晰了许多

六.模型改进

发现去掉学习率更新会提高准确率(从70%提升到83%),因此把train.py里面对应部分删掉。

还有其他方法会在之后进行补充。

源码地址:链接: https://pan.baidu.com/s/1FGcGwrNAZZSEocPORD3bZg 提取码: xsfn 复制这段内容后打开百度网盘手机App,操作更方便哦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/103097.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

交换机基础(四):MSTP负载均衡配置案例

如图所示是某个企业内部核心网络的结构图,目前企业中有20个VLAN, 编号为VLAN1~VLAN20, 为了确保内部网络的可靠性,使用 了冗余链路和MSTP 协议。为了能更好地利用网络资源和带宽,现管理员希望通过配置MSTP 的负载均衡实现网络带宽…

MySQL---表的增查改删(CRUD基础)

文章目录 什么是CRUD?新增(Create)单行数据 全列插入多行数据 指定列插入 查询(Retrieve)全列查询指定列查询查询字段为表达式起别名查询去重查询排序查询条件查询分页查询 修改(Update)删除&…

运维 | 使用 Docker 安装 Jenkins | Jenkins

运维 | 使用 Docker 安装 Jenkins | Jenkins 前言 本期内容主要是为了学习如何通过 Docker 安装Jenkins,仅作为记录与参考,希望对大家有所帮助。 准备工作 系统:CentOS 7.9配置:4c8g 快速安装 下面以 Docker 方式安装 Jenkin…

DCU上如何运行大模型以及用到的docker命令

第一步:需要连接到官方(https://developer.hpccube.com/)提供的vpn 第二步:通过termius进入到项目 第三步:遇到问题 1.docker空间太小了,得换地方:参考这个centos设置docker 目录_mob64ca12f73101的技术博客_51CTO博…

【Qt样式(qss)-5】qss混乱,错乱,不生效的一种原因

前言: 之前写过一些关于qss的文章: 【Qt样式(qss)-1】手册小结(附例:软件深色模式)_深蓝色主题qss表-CSDN博客 【Qt样式(qss)-2】使用小结(软件换肤&#…

算法、语言混编、分布式锁与分布式ID、IO模型

一、算法初识 数据结构和算法是程序的基石。我们使用的所有数据类型就是一种数据结构(数据的组织形式),写的程序逻辑就是算法。 算法是指用来操作数据、解决程序问题的一组方法。 对于同一个问题,使用不同的算法,也…

实验六:DHCP、DNS、Apache、FTP服务器的安装和配置

1. (其它) 掌握Linux下DHCP、DNS、Apache、FTP服务器的安装和配置,在Linux服务器上部署JavaWeb应用 完成单元八的实训内容。 1、安装 JDK 2、安装 MySQL 3、部署JavaWeb应用 安装jdk 教程连接:linux安装jdk8详细步骤-CSDN博客 Jdk来源:linu…

【Docker】Docker学习之一:离线安装Docker步骤

前言:基于Ubuntu Jammy 22.04 (LTS)版本安装和测试 1、Docker安装 1.1、离线安装 步骤一:官网下载 docker 安装包 wget https://download.docker.com/linux/static/stable/x86_64/docker-24.0.6.tgz步骤二:解压安装包; tar -zxvf docker…

java中的异常,以及出现异常后的处理【try,catch,finally】

一、异常概念 异常 :指的是程序在执行过程中,出现的非正常的情况,最终会导致JVM的非正常停止。 注意: 在Java等面向对象的编程语言中,异常本身是一个类,产生异常就是创建异常对象并抛出了一个异常对象。Java处理异常的…

光流法动目标检测

目录 前言 一、效果展示 二、光流法介绍 三、代码展示 总结 前言 动目标检测是计算机视觉领域的一个热门研究方向。传统的方法主要基于背景建模,但这些方法对于光照变化、遮挡和噪声敏感。因此,研究人员一直在寻找更加鲁棒和有效的技术来解决这一问题。…

IAR For ARM 安装教程

电脑环境 安装包下载 1、官网下载 ①搜索 IAR ②切换产品,选择Arm ③选择IAR Embedded Workbench for Arm ④免费试用 2、网盘下载 EWARM-CD-8202-14838.exe(访问密码: 1666) https://url48.ctfile.com/f/33868548-961057458-611638?p1666 软件下载 1、点击安…

WPF中的绑定知识详解(含案例源码分享)

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

Flask后端开发(一)-基础知识和前期准备

目录 1.背景介绍1.1. 项目背景1.2. 项目难点1.3. 项目环境 2. flask后端开发实现的功能3. flask部署和前后端对接3.1. flask运行配置和服务器部署3.2. flask前后端传参 4. 后端测试工具4.1. 工具介绍4.2. 工具使用 后记 1.背景介绍 1.1. 项目背景 就是前几个月临时接手了一个…

13.4web自动化测试(Selenium3+Java)

一.定义 用来做web自动化测试的框架. 二.特点 1.支持各种浏览器. 2.支持各种平台(操作系统). 3.支持各种编程语言. 4.有丰富的api. 三.工作原理 四.搭环境 1.对照Chrome浏览器版本号,下载ChromeDriver,配置环境变量,我直接把.exe文件放在了jdk安装路径的bin文件夹下了(j…

LSM Tree 深度解析

我们将深入探讨日志结构合并树,也称为LSM Tree:这是许多高度可扩展的NoSQL分布式键值型数据库的基础数据结构,例如Amazon的DynamoDB、Cassandra和ScyllaDB。这些数据库的设计被认为支持比传统关系数据库更高的写入速率。我们将看到LSM Tree如…

分享10个创意满满的产品设计网站

在当今的互联网时代,新颖性和创造力是最受关注的,无论一个产品有多好,但没有创意的包装都很难“看到太阳”。因此,创意产品的设计非常重要,今天小将为您带来10个非常有创意的产品设计网站。话不多说,上干货…

越流行的大语言模型越不安全

源自:GoUpSec “人工智能技术与咨询” 发布 安全研究人员用OpenSSF记分卡对GitHub上50个最流行的生成式AI大语言模型项目的安全性进行了评估,结果发现越流行的大语言模型越危险。 近日,安全研究人员用OpenSSF记分卡对GitHub上50个最流…

Sentinel授权规则和规则持久化

大家好我是苏麟 , 今天说说Sentinel规则持久化. 授权规则 授权规则可以对请求方来源做判断和控制。 授权规则 基本规则 授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。 白名单:来源(origin)在白名单内的调用…

批量编辑 Outlook 联系人

现状 Outlook 自带的联系人编辑功能无法快速、批量编辑联系人字段使用 Excel 等外部编辑器,可批量编辑联系人 导出联系人到文件 在【联系人】界面,点击【文件】在【文件】界面,点击【打开和导出】–>【导入/导出】在弹出的向导窗口中点…

FPGA从入门到精通(二十)SignalTapII

这一篇将介绍SignalTapII。 之前的工程我们是做仿真,设置激励,观察输出波形去判断代码没有问题,但事实上我们真实的需求是综合后的代码下载到FPGA芯片中能够符合预期。 其中可能出现问题的原因有: 1、我们是写testbench设置激励…