Python做个猫狗识别系统,给人美心善的邻居

嗨害大家好鸭!我是爱摸鱼的芝士❤

请添加图片描述

宠物真的看着好治愈

谁不想有一只属于自己的乖乖宠物捏~

这篇文章中我放弃了以往的model.fit()训练方法,
改用model.train_on_batch方法。

两种方法的比较:

  • model.fit():用起来十分简单,对新手非常友好
  • model.train_on_batch():封装程度更低,可以玩更多花样。

此外我也引入了进度条的显示方式,更加方便我们及时查看模型训练过程中的情况,可以及时打印各项指标。

🚀 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
  • 显卡(GPU):NVIDIA GeForce RTX 3080

请添加图片描述

一、前期工作

1. 设置GPU

如果使用的是CPU可以注释掉这部分的代码。

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
 
if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  
    tf.config.set_visible_devices([gpus[0]],"GPU")
 
print(gpus)
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

2. 导入数据

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  
import os,PIL
import numpy as np
np.random.seed(1)
import tensorflow as tf
tf.random.set_seed
import warnings
warnings.filterwarnings('ignore')
 
import pathlib
data_dir = "./data/train"
data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*')))
 
print("图片总数为:",image_count)
图片总数为:3400

请添加图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset中

batch_size = 8
img_height = 224
img_width = 224

TensorFlow版本是2.2.0的同学可能会遇到
module ‘tensorflow.keras.preprocessing’ has no attribute 'image_dataset_from_directory’的报错,
升级一下TensorFlow就OK了

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 3400 files belonging to 2 classes.
Using 2720 files for training.

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 680 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['cat', 'dog']

2. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(8, 224, 224, 3)
(8,)

Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状224x224x3的8张图片(最后一维指的是彩色通道RGB)。

Label_batch是形状(8,)的张量,这些标签对应8张图片

3. 配置数据集

  • shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE
 
def preprocess_image(image,label):
    return (image/255.0,label)
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
 
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

如果报 AttributeError: module ‘tensorflow._api.v2.data’ has no attribute ‘AUTOTUNE’ 错误,就将 AUTOTUNE = tf.data.AUTOTUNE 更换为 AUTOTUNE = tf.data.experimental.AUTOTUNE,这个错误是由于版本问题引起的。

4. 可视化数据

plt.figure(figsize=(15, 10)) 
 
for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

请添加图片描述

请添加图片描述

三、构建VG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcX与predictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

请添加图片描述
请添加图片描述

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
 
def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
 
    model = Model(input_tensor, output_tensor)
    return model
 
model=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

请添加图片描述

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

请添加图片描述

五、训练模型

from tqdm import tqdm
import tensorflow.keras.backend as K
 
epochs = 10
lr     = 1e-4
 
# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []
 
for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)
        
        for image,label in train_ds:      
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法
            
            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://mtyjkh.blog.csdn.net/article/details/119506151
            """
            history = model.train_on_batch(image,label)
            
            train_loss     = history[0]
            train_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
        history_train_loss.append(train_loss)
        history_train_accuracy.append(train_accuracy)
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:
 
        for image,label in val_ds:      
            
            history = model.test_on_batch(image,label)
            
            val_loss     = history[0]
            val_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            pbar.update(1)
        history_val_loss.append(val_loss)
        history_val_accuracy.append(val_accuracy)
            
    print('结束验证!')
    print("验证loss为:%.4f"%val_loss)
    print("验证准确率为:%.4f"%val_accuracy)
Epoch 1/10: 100%|████████| 340/340 [00:23<00:00, 14.36it/s, loss=1.1077, accuracy=0.6250, lr=9.2e-5]
开始验证!
Epoch 1/10: 100%|█████████████████████| 85/85 [00:02<00:00, 36.55it/s, loss=0.9331, accuracy=0.6250]
结束验证!
验证loss为:0.9331
验证准确率为:0.6250
Epoch 2/10: 100%|███████| 340/340 [00:19<00:00, 17.49it/s, loss=0.4633, accuracy=0.6250, lr=8.46e-5]

......

Epoch 9/10: 100%|███████| 340/340 [00:19<00:00, 17.36it/s, loss=0.0112, accuracy=1.0000, lr=4.72e-5]
开始验证!
Epoch 9/10: 100%|█████████████████████| 85/85 [00:01<00:00, 43.46it/s, loss=0.0302, accuracy=1.0000]
结束验证!
验证loss为:0.0302
验证准确率为:1.0000
Epoch 10/10: 100%|██████| 340/340 [00:19<00:00, 17.22it/s, loss=0.0000, accuracy=1.0000, lr=4.34e-5]
开始验证!
Epoch 10/10: 100%|████████████████████| 85/85 [00:02<00:00, 42.15it/s, loss=0.0231, accuracy=1.0000]
结束验证!
验证loss为:0.0231
验证准确率为:1.0000
# 这是我们之前的训练方法。
# history = model.fit(
#     train_ds,
#     validation_data=val_ds,
#     epochs=epochs
# )

请添加图片描述

六、模型评估

epochs_range = range(epochs)
 
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

请添加图片描述

请添加图片描述

七、保存and加载模型

这是最简单的模型保存与加载方法哈

# 保存模型
model.save('model/21_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/21_model.h5')

八、预测

plt.figure(figsize=(18, 3))  
plt.suptitle("预测结果展示")
 
for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  

        plt.imshow(images[i].numpy())

        img_array = tf.expand_dims(images[i], 0) 
       
        predictions = new_model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])
 
        plt.axis("off")

请添加图片描述

今天的文章就是这样啦~

祝大家早日有属于自己的爱宠~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/10272.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes 部署 StarRocks 集群

文章目录StarRocks简介系统架构图安装部署StarRocks手动部署通过 Docker部署使用 StarGo 部署管理通过 StarRocks Manager部署管理通过 Kubernetes部署工作原理逻辑图部署 StarRocks Operator部署 StarRocks 集群访问 StarRocks 集群集群内访问 StarRocks 集群集群外访问 StarR…

【案例实践】R语言多元数据统计分析在生态环境中的实践应用

查看原文>>>R语言生物群落分析绘图、多元统计分析、CMIP6、遥感碳储量、GEE林业、InVEST等 生态环境领域研究中常常面对众多的不同类型的数据或变量&#xff0c;当要同时分析多个因变量&#xff08;y&#xff09;时需要用到多元统计分析&#xff08;multivariate sta…

Spark----DataFrame和DataSet

Spark之DataFrame和DataSet 文章目录Spark之DataFrame和DataSetDataFrameDSL 语法创建DataFrame查看DataFrame的Schema信息只查看列数据的6种方式按照“age”分区&#xff0c;查看数据条数增加列withColumn修改列名withColumnRenamedRDD 转换为 DataFrameDataFrame 转换为 RDD转…

音质蓝牙耳机哪款好用?2023公认音质好的四款蓝牙耳机推荐

现如今&#xff0c;蓝牙耳机越来越受欢迎&#xff0c;不少人在听歌、追剧、甚至是玩游戏的时候都会戴着它。最近看到很多人问&#xff0c;音质蓝牙耳机哪款好用&#xff1f;针对这个问题&#xff0c;我来给大家推荐四款公认音质好的蓝牙耳机&#xff0c;一起来看看吧。 一、南…

算法笔记:Frechet距离度量

曲线之间相似性的度量&#xff0c;它考虑了沿曲线的点的位置和顺序 1 概念 1.1 直观理解 主人走路径A&#xff0c;狗走路径B&#xff0c;他们有不同的配速方案主人和狗各自走完这两条路径过程中所需要的最短狗绳长度 &#xff08;在某一种配速下需要的狗绳长度&#xff09;&a…

考研复试确认神操作!

终于进行到了研究生考试的尾声&#xff0c;但让考生感到无力吐槽的事情&#xff0c;却还在继续上演&#xff0c;比如苏科大&#xff0c;再比如中地大、苏大&#xff0c;三所学校的神操作&#xff0c;着实让无数考生忍不住调侃&#xff1a;原来考研不仅拼实力&#xff0c;还得拼…

你的APP内存还在暴增吗?试着用Bitmap管理下内存~

作者&#xff1a;layz4android 相信伙伴们在日常的开发中&#xff0c;一定对图片加载有所涉猎&#xff0c;而且对于图片加载现有的第三方库也很多&#xff0c;例如Glide、coil等&#xff0c;使用这些三方库我们好像就没有啥担忧的&#xff0c;他们内部的内存管理和缓存策略做的…

如何实现Chatgpt写文章(附chatgpt3.5免费接口)

申明&#xff1a;本次只是说一下实现思路&#xff0c;官方的接口以及如何实现方式&#xff0c;本文没有提及&#xff0c;这次只是一个思路&#xff0c;若想代替人工完成质量还差的很远&#xff0c;请审核大大放行 今天再次优化了代码&#xff0c;修复了一些bug&#xff0c;考虑…

VUE 学习笔记(一)开发环境搭建

1、Visual Studio Code安装及使用 下载地址官网&#xff1a;https://code.visualstudio.com/ 直接点击下载按钮即可&#xff0c;会根据系统自动下载合适的版本&#xff0c;无需自行选择。 2、VSCode 上安装&#xff1a;JavaScript Debugger 目前 Debugger for Chrome 已经处…

使用向量机(SVM)算法的推荐系统部署实现

包括3个模块&#xff1a;数据预处理、模型训练及保存、模型测试&#xff0c;下面分别给出各模块的功能介绍及相关代码。 数据集下载链接为https://www.aitechclub.com/data-detail? data_id29&#xff0c;停用词典下载链接为http://www.datasoldier.net/archives/636。 1.数…

232:vue+openlayers选择左右两部分的地图,不重复,横向卷帘

第232个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+openlayers项目中自定义js实现横向卷帘。这个示例中从左右两个选择框中来选择不同的地图,做了不重复的处理,即同一个数组,两部分根据选择后的状态做disabled处理,避免重复选择。 直接复制下面的 vue+openlayers…

c语言—指针进阶

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 给大家跳段街舞感谢支持&#xff01;ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ…

第13届蓝桥杯省赛真题剖析-2022年4月17日Scratch编程初中级组

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第122讲。 第13届蓝桥杯省赛举办了两次&#xff0c;这是2022年4月17日举行的第一次省赛&#xff0c;比赛仍然采取线上形…

ChatGPT技术原理、研究框架,应用实践及发展趋势(附166份报告)

​ 一、AI框架重要性日益突显&#xff0c;框架技术发展进入繁荣期&#xff0c;国内AI框架技术加速发展&#xff1a; 1、AI框架作为衔接数据和模型的重要桥梁&#xff0c;发展进入繁荣期&#xff0c;国内外框架功能及性能加速迭代&#xff1b; 2、Pytorch、Tensorflow占据AI框…

因果推断14--DRNet论文和代码学习

目录 论文介绍 代码实现 DRNet ReadMe 因果森林 论文介绍 因果推断3--DRNet&#xff08;个人笔记&#xff09;_万三豹的博客-CSDN博客 摘要&#xff1a;估计个体在不同程度的治疗暴露下的潜在反应&#xff0c;对于医疗保健、经济学和公共政策等几个重要领域具有很高的实…

GFD563A101 3BHE046836R0101

GFD563A101 3BHE046836R0101 ABB 7寸触摸屏 PP874K 3BSE069273R1 控制面板 原装进口 ABB 7寸触摸屏 PP874M 3BSE069279R1 黑色坚固 船用认证面板 ABB AC 800M PM865K01 处理器单元 3BSE031151R6 PLC库存 ABB AC 800M控制器模块 PM861AK01 3BSE018157R1 PM861A ABB AC 800PEC PC…

Kafka系统整理 一

一、Kafka 概述 1.1 定义 Kafka传统定义&#xff1a;Kafka是一个分布式的基于发布/订阅模式的消息队列 (Message Queue), 主要应用于大数据实时处理领域。 kafka最新定义&#xff1a;kafka是一个开源的分布式事件流平台&#xff08;Event Streaming Platform&#xff09;, 被…

实验二 图像空间域频率域滤波

一&#xff0e;实验目的&#xff1a; 1. 模板运算是空间域图象增强的方法&#xff0c;也叫模板卷积。 &#xff08;1&#xff09;平滑&#xff1a;平滑的目的是模糊和消除噪声。平滑是用低通滤波器来完成&#xff0c;在空域中全是正值。 &#xff08;2&#xff09;锐化&…

Centos7安装部署Jenkins

Jenkins简介&#xff1a; Jenkins只是一个平台&#xff0c;真正运作的都是插件。这就是jenkins流行的原因&#xff0c;因为jenkins什么插件都有 Hudson是Jenkins的前身&#xff0c;是基于Java开发的一种持续集成工具&#xff0c;用于监控程序重复的工作&#xff0c;Hudson后来被…

【如何使用Arduino控制WS2812B可单独寻址的LED】

【如何使用Arduino控制WS2812B可单独寻址的LED】 1. 概述2. WS2812B 发光二极管的工作原理3. Arduino 和 WS2812B LED 示例3.1 例 13.2 例 24. 使用 WS2812B LED 的交互式 LED 咖啡桌4.1 原理图4.2 源代码在本教程中,我们将学习如何使用 Arduino 控制可单独寻址的 RGB LED 或 …