从零开始的Hadoop学习(六)| HDFS读写流程、NN和2NN工作机制、DataNode工作机制

1. HDFS的读写流程(面试重点)

1.1 HDFS写数据流程

1.1.1 剖析文件写入

在这里插入图片描述

(1)客户端通过 Distributed FileSystem 模块向 NameNode 请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

(2)NameNode 返回是否可以上传。

(3)客户端请求第一个 Block 上传到哪几个 DataNode 服务上。

(4)NameNode 返回 3个 DataNode节点,分别为dn1、dn2、dn3。

(5)客户端通过 FSDataOutputStream 模块请求 dn1 上传数据,dn1 收到请求会继续调用 dn2,然后dn2 调用 dn3,将这个通信管道建立完成。

(6)dn1、dn2、dn3 逐级应答客户端。

(7)客户端开始往 dn1上传第一个 Block(先从磁盘读取数据放到一个本地内存缓存),以 Packet 为单位,dn1 收到一个 Packet 就会传给 dn2,dn2 传给 dn3;dn1 每传一个 packet 会放入一个应答队列等待应答。

(8)当一个 Block 传输完成之后,客户端再次请求 NameNode 上传第二个 Block 的服务器。

1.1.2 网络拓扑-节点距离计算

在 HDFS 写数据的过程中,NameNode 会选择距离待上传数据最近距离的 DataNode接收数据。那么这个最近距离怎么计算呢?

节点距离:两个节点到达最近的共同祖先的距离总和。
在这里插入图片描述

例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述。

大家算一算每两个节点之间的距离。
在这里插入图片描述

1.1.3 机架感知(副本存储节点选择)

1)机架感受说明

(1)官方说明

http://hadoop.apache.org/docs/r3.1.3/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication

For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on the local machine if the writer is on a datanode, otherwise on a random datanode, another replica on a node in a different (remote) rack, and the last on a different node in the same remote rack. This policy cuts the inter-rack write traffic which generally improves write performance. The chance of rack failure is far less than that of node failure; this policy does not impact data reliability and availability guarantees. However, it does reduce the aggregate network bandwidth used when reading data since a block is placed in only two unique racks rather than three. With this policy, the replicas of a file do not evenly distribute across the racks. One third of replicas are on one node, two thirds of replicas are on one rack, and the other third are evenly distributed across the remaining racks. This policy improves write performance without compromising data reliability or read performance.

(2)源码说明

Crtl + n 查找BlockPlacementPolicyDefault,在该类中查找chooseTargetInOrder方法。

2)Hadoop3.1.3 副本节点选择
在这里插入图片描述

1.2 HDFS 读数据流程

在这里插入图片描述

(1)客户端通过 DistributedFileSystem 向 NameNode 请求下载文件。NameNode 通过查询元数据,找到文件块所在的 DataNode 地址。

(2)挑选一台 DataNode(就近原则,然后随机)服务器,请求读取数据。

(3)DataNode 开始传输数据给客户端(从磁盘里面读取数据输入流,以 Packet 为单位来做校验)。

(4)客户端以 Packet 为单位接收,先在本地缓存,然后写入目标文件。

2. NameNode 和 SecondaryNameNode

2.1 NN 和 2NN 工作机制

思考:NameNode中的元数据是存储在哪里的?

首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。

这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过 FsImage 和 Edits的合并,合成元数据。

但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并。

NameNode工作机制

在这里插入图片描述

1)第一阶段:NameNode启动

(1)第一次启动 NameNode 格式化后,创建 Fsimage 和 Edits 文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。

(2)客户端对元数据进行增删改的请求。

(3)NameNode 记录操作日志,更新滚动日志。

(4)NameNode在内存中对元数据进行增删改。

2)第二阶段:Secondary NameNode 工作

(1)Secondary NameNode 询问 NameNode 是否需要CheckPoint。直接带回 NameNode 是否检查结果。

(2)Secondary NameNode 请求执行 CheckPoint。

(3)NameNode 滚动正在写的 Edits 日志。

(4)将滚动钱的编辑日志和镜像文件拷贝到 Secondary NameNode。

(5)Secondary NameNode 加载编辑日志和镜像文件到内存,并合并。

(6)生产新的镜像文件fsimage.chkpoint。

(7)拷贝 fsimage.chkpoint 到 NameNode。

(8)NameNode 将 fsimage.chkpoint 重新命名成 fsimage。

2.2 Fsimage 和 Edits 解析

Fsimage 和 Edits 概念
在这里插入图片描述

1)oiv 查看 Fsimage 文件

[atguigu@hadoop102 current]$ hdfs
oiv            apply the offline fsimage viewer to an fsimage
oev            apply the offline edits viewer to an edits file

(2)基本语法

hdfs oiv -p 文件类型 -i镜像文件 -o 转换后文件输出路径

(3)案例实操

[atguigu@hadoop102 current]$ pwd
/opt/module/hadoop-3.1.3/data/dfs/name/current

[atguigu@hadoop102 current]$ hdfs oiv -p XML -i fsimage_0000000000000000025 -o /opt/module/hadoop-3.1.3/fsimage.xml

[atguigu@hadoop102 current]$ cat /opt/module/hadoop-3.1.3/fsimage.xml

将显示的xml文件内容拷贝到Idea中创建的xml文件中,并格式化。部分显示结果如下。

<inode>
	<id>16386</id>
	<type>DIRECTORY</type>
	<name>user</name>
	<mtime>1512722284477</mtime>
	<permission>atguigu:supergroup:rwxr-xr-x</permission>
	<nsquota>-1</nsquota>
	<dsquota>-1</dsquota>
</inode>
<inode>
	<id>16387</id>
	<type>DIRECTORY</type>
	<name>atguigu</name>
	<mtime>1512790549080</mtime>
	<permission>atguigu:supergroup:rwxr-xr-x</permission>
	<nsquota>-1</nsquota>
	<dsquota>-1</dsquota>
</inode>
<inode>
	<id>16389</id>
	<type>FILE</type>
	<name>wc.input</name>
	<replication>3</replication>
	<mtime>1512722322219</mtime>
	<atime>1512722321610</atime>
	<perferredBlockSize>134217728</perferredBlockSize>
	<permission>atguigu:supergroup:rw-r--r--</permission>
	<blocks>
		<block>
			<id>1073741825</id>
			<genstamp>1001</genstamp>
			<numBytes>59</numBytes>
		</block>
	</blocks>
</inode >

思考:可以看出,Fsimage 中没有记录块所对应 DataNode,为什么?

在集群启动后,要求 DataNode 上报数据块信息,并间隔一段时间后再次上报。

2)oev 查看 Edit 文件

(1)基本语法

hdfs oev -p 文件类型 -i编辑日志 -o 转换后文件输出路径

(2)案例实操

[atguigu@hadoop102 current]$ hdfs oev -p XML -i edits_0000000000000000012-0000000000000000013 -o /opt/module/hadoop-3.1.3/edits.xml

[atguigu@hadoop102 current]$ cat /opt/module/hadoop-3.1.3/edits.xml

将显示的xml文件内容拷贝到Idea中创建的xml文件中,并格式化。显示结果如下。

<?xml version="1.0" encoding="UTF-8"?>
<EDITS>
	<EDITS_VERSION>-63</EDITS_VERSION>
	<RECORD>
		<OPCODE>OP_START_LOG_SEGMENT</OPCODE>
		<DATA>
			<TXID>129</TXID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ADD</OPCODE>
		<DATA>
			<TXID>130</TXID>
			<LENGTH>0</LENGTH>
			<INODEID>16407</INODEID>
			<PATH>/hello7.txt</PATH>
			<REPLICATION>2</REPLICATION>
			<MTIME>1512943607866</MTIME>
			<ATIME>1512943607866</ATIME>
			<BLOCKSIZE>134217728</BLOCKSIZE>
			<CLIENT_NAME>DFSClient_NONMAPREDUCE_-1544295051_1</CLIENT_NAME>
			<CLIENT_MACHINE>192.168.10.102</CLIENT_MACHINE>
			<OVERWRITE>true</OVERWRITE>
			<PERMISSION_STATUS>
				<USERNAME>atguigu</USERNAME>
				<GROUPNAME>supergroup</GROUPNAME>
				<MODE>420</MODE>
			</PERMISSION_STATUS>
			<RPC_CLIENTID>908eafd4-9aec-4288-96f1-e8011d181561</RPC_CLIENTID>
			<RPC_CALLID>0</RPC_CALLID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>
		<DATA>
			<TXID>131</TXID>
			<BLOCK_ID>1073741839</BLOCK_ID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_SET_GENSTAMP_V2</OPCODE>
		<DATA>
			<TXID>132</TXID>
			<GENSTAMPV2>1016</GENSTAMPV2>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_ADD_BLOCK</OPCODE>
		<DATA>
			<TXID>133</TXID>
			<PATH>/hello7.txt</PATH>
			<BLOCK>
				<BLOCK_ID>1073741839</BLOCK_ID>
				<NUM_BYTES>0</NUM_BYTES>
				<GENSTAMP>1016</GENSTAMP>
			</BLOCK>
			<RPC_CLIENTID></RPC_CLIENTID>
			<RPC_CALLID>-2</RPC_CALLID>
		</DATA>
	</RECORD>
	<RECORD>
		<OPCODE>OP_CLOSE</OPCODE>
		<DATA>
			<TXID>134</TXID>
			<LENGTH>0</LENGTH>
			<INODEID>0</INODEID>
			<PATH>/hello7.txt</PATH>
			<REPLICATION>2</REPLICATION>
			<MTIME>1512943608761</MTIME>
			<ATIME>1512943607866</ATIME>
			<BLOCKSIZE>134217728</BLOCKSIZE>
			<CLIENT_NAME></CLIENT_NAME>
			<CLIENT_MACHINE></CLIENT_MACHINE>
			<OVERWRITE>false</OVERWRITE>
			<BLOCK>
				<BLOCK_ID>1073741839</BLOCK_ID>
				<NUM_BYTES>25</NUM_BYTES>
				<GENSTAMP>1016</GENSTAMP>
			</BLOCK>
			<PERMISSION_STATUS>
				<USERNAME>atguigu</USERNAME>
				<GROUPNAME>supergroup</GROUPNAME>
				<MODE>420</MODE>
			</PERMISSION_STATUS>
		</DATA>
	</RECORD>
</EDITS >

思考:NameNode 如何确定下次开机启动的时候合并哪些Edits?

2.3 CheckPoint 时间设置

1)通常情况下,SecondaryNameNode 每隔一小时执行一次。

[hdfs-deafult.xml]

<property>
  <name>dfs.namenode.checkpoint.period</name>
  <value>3600s</value>
</property>

2)一分钟检查一次操作次数,当操作次数达到1百万时,SecondaryNameNode 执行一次。

<property>
  <name>dfs.namenode.checkpoint.txns</name>
  <value>1000000</value>
<description>操作动作次数</description>
</property>

<property>
  <name>dfs.namenode.checkpoint.check.period</name>
  <value>60s</value>
<description> 1分钟检查一次操作次数</description>
</property>

3. DataNode

3.1 DataNode 工作机制

在这里插入图片描述

(1)一个数据块在 DataNode 上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。

(2)DataNode 启动后向 NameNode 注册,通过后,周期性(6小时)的向NameNode上报所有的块信息。

DN向NN汇报当前解读信息的时间间隔,默认6小时

<property>
	<name>dfs.blockreport.intervalMsec</name>
	<value>21600000</value>
	<description>Determines block reporting interval in milliseconds.</description>
</property>

DN 扫描自己节点块信息列表的时间,默认6小时

<property>
	<name>dfs.datanode.directoryscan.interval</name>
	<value>21600s</value>
	<description>Interval in seconds for Datanode to scan data directories and reconcile the difference between blocks in memory and on the disk.
	Support multiple time unit suffix(case insensitive), as described
	in dfs.heartbeat.interval.
	</description>
</property>

(3)心跳是每3秒一次,心跳返回结果带有 NameNode 给该 DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分组没有收到某个 DataNode的心跳,则认为该节点不可用。

(4)集群运行中可以安全加入和退出一些机器。

6.2 数据完整性

思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?

如下是 DataNode 节点保证数据完整性的方法。

(1)当DataNode读取Block的时候,它会计算 CheckSum。

(2)如果计算后的 CheckSum,与 Block 创建时值不一样,说明 Block 已经损坏。

(3)Client 读取其他 DataNode 上的Block。

(4)常见的校验算法src(32),md5(128),sha1(160)

(5)DataNode 在其文件创建后周期验证 CheckSum。
在这里插入图片描述

6.3 掉线时限参数设置

在这里插入图片描述

需要注意的是 hdfs-site.xml 配置文件中的 heartbeat.recheck.interval 的单位为毫秒,dfs.heartbeat.interval 的单位为秒。

<property>
    <name>dfs.namenode.heartbeat.recheck-interval</name>
    <value>300000</value>
</property>

<property>
    <name>dfs.heartbeat.interval</name>
    <value>3</value>
</property>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/101541.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vscode远程调试php

使用vscode远程调试php的方法 1.安装remote ssh插件 2.连接服务器 可以点击左下角的绿色按钮&#xff0c;或者ctrlshiftp打开命令框输入remote ssh应该也有。 3.在服务器端vscode安装php debug插件 4.安装xdebug xdebug是用来调试php的软件&#xff0c;原本和vscode没什么关…

webrtc-m79-msvc编译H264

0 写在前面 本文主要参考&#xff1a;webrtc 4577版本vs编译_tusong86的博客-CSDN博客 4577也就是m93&#xff0c;由于源码版本的不同&#xff0c;可能存在一定的出入&#xff0c;可根据实际情况进行修改&#xff1b; 感谢作者的付出&#xff1b; 1 编译参数 powershell运…

【docker】运行redis

拉取redis镜像 有多种选择&#xff1a; redis&#xff08;基础版&#xff09;redis/redis-stack&#xff08;包含redis stack server和RedisInsight&#xff09;redis/redis-stack-server&#xff08;仅包含redis stack server&#xff09; docker pull redis docker pull r…

C语言——指针基本语法

概述 内存地址 在计算机内存中&#xff0c;每个存储单元都有一个唯一的地址(内存编号)。 通俗理解&#xff0c;内存就是房间&#xff0c;地址就是门牌号 指针和指针变量 指针&#xff08;Pointer&#xff09;是一种特殊的变量类型&#xff0c;它用于存储内存地址。 指针的实…

【混合时变参数系统参数估计算法】使用范数总和正则化和期望最大化的混合时变参数系统参数估计算法(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

图像处理简介

目录 基本术语 1 .图像(image) 1.1 像素(Pixel) 1.2 颜色深度&#xff08;Color Depth&#xff09; 1.3 分辨率&#xff08;Resolution&#xff09; 1.4 像素宽高比&#xff08;Pixel Aspect Ratio&#xff09; 1.5 帧率(FPS) 1.6 码率&#xff08;BR&#xff09; 1. …

Vue中如何为Echarts统计图设置数据

在前端界面接收后端数据后&#xff0c;将数据赋值给ECharts中的data时出现了&#xff0c;数据读取失败的问题&#xff08;可能是由于数据渲染的前后顺序问题&#xff09;。后通过如下方式进行了解决&#xff1a; 1、接下来将介绍UserController中的countUsers方法&#xff0c;…

Liunx系统编程:信号量

一. 信号量概述 1.1 信号量的概念 在多线程场景下&#xff0c;我们经常会提到临界区和临界资源的概念&#xff0c;如果临界区资源同时有多个执行流进入&#xff0c;那么在多线程下就容易引发线程安全问题。 为了保证线程安全&#xff0c;互斥被引入&#xff0c;互斥可以保证…

redis面试题二

redis如何处理已过期的元素 常见的过期策略 定时删除&#xff1a;给每个键值设置一个定时删除的事件&#xff0c;比如有一个key值今天5点过期&#xff0c;那么设置一个事件5点钟去执行&#xff0c;把它数据给删除掉&#xff08;优点&#xff1a;可以及时利用内存及时清除无效数…

华为Mate60低调发布,你所不知道的高调真相?

华为Mate60 pro 这两天的劲爆新闻想必各位早已知晓&#xff0c;那就是华为Mate60真的来了&#xff01;&#xff01;&#xff01;并且此款手机搭载了最新国产麒麟9000s芯片&#xff0c;该芯片重新定义了手机性能的巅峰。不仅在Geekbench测试中表现出色&#xff0c;还在实际应用…

CTFhub-SSRF-内网访问

CTFHub 环境实例 | 提示信息 http://challenge-8bf41c5c86a8c5f4.sandbox.ctfhub.com:10800/?url_ 根据提示&#xff0c;在url 后门添加 127.0.0.1/flag.php http://challenge-8bf41c5c86a8c5f4.sandbox.ctfhub.com:10800/?url127.0.0.1/flag.php ctfhub{a6bb51530c8f6be0…

基于深度学习的三维重建从入门实战教程 原理讲解 源码解析 实操教程课件下载

传统的重建方法是使用光度一致性等来计算稠密的三维信息。虽然这些方法在理想的Lambertian场景下,精度已经很高。 但传统的局限性,例如弱纹理,高反光和重复纹理等,使得重建困难或重建的结果不完整。 基于学习的方法可以引入比如镜面先验和反射先验等全局语义信息,使匹配…

elementui tree 层级过多时,高亮状态无法选满整行

问题&#xff1a; 如上图所示&#xff0c;官方的tree组件&#xff0c;在层级很多时 elementui -tree 的高亮状态并没有选中整行。 &#xff08;衍生库 vue-easy-tree 也会出现此问题&#xff09; 原因&#xff1a; &#xff08;没有查看源码&#xff0c;只是根据dom简单定位…

Echart笔记

Echart笔记 柱状图带背景色的柱状图将X与Y轴交换制作为进度条 柱状图 带背景色的柱状图 将X与Y轴交换制作为进度条 //将X与Y轴交换制作为进度条 option { xAxis: {type: value,min:0,max:100,show:false,//隐藏x轴},yAxis: {type: category,data:[进度条],show:false,//隐…

Citespace、vosviewer、R语言的文献计量学 、SCI

文献计量学是指用数学和统计学的方法&#xff0c;定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体&#xff0c;注重量化的综合性知识体系。特别是&#xff0c;信息可视化技术手段和方法的运用&#xff0c;可直观的展示主题的研究发展历程、研究现状、研究…

URL重定向漏洞

URL重定向漏洞 1. URL重定向1.1. 漏洞位置 2. URL重定向基础演示2.1. 查找漏洞2.1.1. 测试漏洞2.1.2. 加载完情况2.1.3. 验证漏洞2.1.4. 成功验证 2.2. 代码修改2.2.1. 用户端代码修改2.2.2. 攻击端代码修改 2.3. 利用思路2.3.1. 用户端2.3.1.1. 验证跳转 2.3.2. 攻击端2.3.2.1…

使用正则表达式在中英文之间添加空格

有时为了排版需要&#xff0c;我们可能需要在文章的中英文之间添加空格&#xff0c;特别是中文中引用了英文单词时&#xff0c;这种情况使用正则表达式整体修订是最明智的做法。首先&#xff0c;推荐使用在线的正则表格式工具&#xff1a;https://regex101.com/ , 该工具非常强…

LeetCode-53-最大子数组和-贪心算法

贪心算法理论基础&#xff1a; 局部最优推全局最优 贪心无套路~ 没有什么规律~ 重点&#xff1a;每个阶段的局部最优是什么&#xff1f; 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#…

煤矿监管电子封条算法

煤矿监管电子封条算法基于yolov5网络模型深度学习框架&#xff0c;先进技术的创新举措&#xff0c;煤矿监管电子封条算法通过在现场运料运人井口、回风井口、车辆出入口等关键位置进行人员进出、人数变化和设备开停等情况的识别和分析。YOLO检测速度非常快。标准版本的YOLO可以…

PY32F003F18P单片机概述

PY32F003F18P单片机是普冉的一款ARM微控制器&#xff0c;内核是Cortex-M0。这个单片机的特色&#xff0c;就是价格便宜&#xff0c;FLASH和SRAM远远超过8位单片机&#xff0c;市场竞争力很强大。 一、硬件资源&#xff1a; 1)、FLASH为64K字节&#xff1b; 2)、SRAM为8K字节&…