超图嵌入论文阅读1:对偶机制非均匀超网络嵌入

超图嵌入论文阅读1:对偶机制非均匀超网络嵌入

原文:Nonuniform Hyper-Network Embedding with Dual Mechanism ——TOIS(一区 CCF-A)

背景

超边:每条边可以连接不确定数量的顶点

我们关注超网络的两个属性:非均匀对偶属性

贡献

  1. 提出了一种称为 Hyper2vec 的灵活模型,通过在 Skip-gram 框架下对超网络应用有偏二阶随机游走策略来学习超网络的嵌入;
  2. 通过对偶超网络来构建进一步的模型来组合超边的特征,称为NHNE,基于一维卷积神经网络。训练了一个元组相似函数来建模非均匀关系。

扩展

现状

  • 很少有网络嵌入方法可以直接应用于超网络——无法直接推广

  • 传统方法是将它们转换为正常网络:团扩展、星扩展——显式或隐式导致原始超网络的信息丢失

    如:团扩展将所有超边平均转换为正常边,这改变了顶点之间的关系,丢失了超边的信息。因为元组关系所暗示的所有可能的边都被平等对待,并且不再存在元组关系

  • 到2020年为止,只有几种超网络嵌入方法被提出,主要是为具有特定属性(如均匀性和不可分解性)的超网络设计的,因此不能提高在广泛的超网络上的性能。——当前其他方法泛化能力差

本工作对超网络的独特观察

  1. 非均匀:超网络中的超边通常是不均匀的——需要具有可变长度输入的函数来预测包含不同数量的顶点的超边
  2. 对偶性:超图的对偶网络具有显着的含义——可以用来捕获超边的高阶邻近度和结构属性等(原始超网络建模中可能丢失)

评估实验:链接预测、顶点分类

相关工作

传统图嵌入

  • 经典的网络嵌入方法:LLE拉普拉斯特征映射IsoMap

  • 随机游走嵌入方法(基于Skip-gram思想):DeepWalk(一阶游走)、Node2vec(二阶游走)

  • 大规模网络嵌入方法:LINE(保留一阶和二阶邻近性)、SDNESDAESiNE(深度网络学习顶点嵌入)

  • 邻域聚合编码器:依赖于顶点的特征和属性、很难应用于无监督任务

超图嵌入

  • 基于谱聚类技术:谱聚类假设图割对分类有用——泛化能力差。

  • 均匀超图嵌入:异构超图嵌入(HHE)、超图嵌入(HGE)、深度超网络嵌入(DHNE)和异构超网络嵌入(HHNE)

    • HHE通过求解与超网络拉普拉斯矩阵相关的特征向量问题来学习嵌入,但它既费时又耗空间。
    • HGE通过将多路关系合并到与几何均值和算术平均值相关的优化问题中来学习嵌入,但它不灵活,无法很好地捕获非均匀超网络的特征。
    • DHNE是一种基于神经网络的超网络嵌入模型,但它仅适用于具有高不可分解超边的统一异构超网络。
    • HHNE利用图卷积网络来学习顶点的嵌入,但它依赖于顶点的特征,在无监督环境下很难应用于分类任务。
  • 二分(星形)扩展嵌入:多用于推荐——二分网络嵌入 (BiNE)等,其他异质图方法也可以,但针对性不强。

模型

  1. 在超网络中进行随机游走来捕获顶点的高阶接近度。

    • 为超网络建立了一个基本的概率模型,然后使用二阶随机游走在深度优先搜索 (DFS) 和广度优先搜索 (BFS) 之间平滑插值
    • 引入了一种程度偏差随机游走机制来纠正负偏差或为随机游走引入正偏差
  2. 引入了对偶超网络挖掘策略,设计了一个神经网络模型来组合原始超网络和双超网络的特征,同时训练一个元组相似度函数来评估超网络中的非均匀关系。

随机游走

一阶:定义一个顶点到其邻居的转移概率

  • 对于当前顶点 v,我们首先根据 e 的权重随机选择一个与 v 关联的超边 e,然后选择一个顶点 x ∈ e 作为随机游走的下一个顶点。最终形成超路径。

  • 转移概率如下:
    π 1 ( x ∣ v ) = ∑ e ∈ E w ( e ) h ( v , e ) d ( v ) h ( x , e ) δ ( e ) . \pi_1(x|v)=\sum_{e \in E} w(e)\frac{h(v,e)}{d(v)} \frac{h(x,e)}{\delta(e)}. π1(xv)=eEw(e)d(v)h(v,e)δ(e)h(x,e).

二阶:嵌入时平衡同质性和结构等价

——不仅根据当前顶点 v, 还根据**前一个顶点 u **移动到下一个顶点 x

——通过使用两个参数 p 和 q 在超网络中引入了二阶随机游走策略

  • 当前顶点v的邻居分为三部分:前一个顶点 u、u 的邻居、其他顶点。

  • 二阶搜索偏差 α (·) 定义如下:
    α ( x ∣ v , u ) = { 1 p ,   if  x = u 1 ,   if  ∃ e ∈ E , x ∈ e , u ∈ e 1 q ,   others , \alpha(x|v,u)= \left\{ \begin{array}{l} \frac{1}{p},\space &\text{if} \space x = u \\ 1, \space &\text{if} \space \exist e \in E,x \in e,u \in e \\ \frac{1}{q}, \space &\text{others} \end{array} \right. , α(xv,u)= p1, 1, q1, if x=uif eE,xe,ueothers,
    其中 p 是返回参数,它控制立即重新访问路径中前一个顶点 u 的可能性,q 是内部参数,它控制步行者探索远处还是近处的顶点。因此,二阶随机游走模型的非归一化转移概率可以表示为:
    π 2 ( x ∣ v , u ) = α ( x ∣ v , u ) π 1 ( x ∣ v ) \pi_2(x|v,u)=\alpha(x|v,u)\pi_1(x|v) π2(xv,u)=α(xv,u)π1(xv)

    • q < min (p, 1)时,更倾向于访问远离u的顶点——DFS,鼓励进一步探索
    • p < min (q, 1)或1 < min (p, q) 时,倾向于访问前一个顶点 u 或靠近u 的顶点——BFS,局部视图

有偏随机游走

基于度的有偏随机游走:——问题:DFS 和 BFS 搜索策略将引入特定的负偏差

  • 正随机游走的负偏差是有价值的
  • 引入一些正偏差来捕获网络的某些特定特征或平衡顶点的更新机会也是有帮助的

——基于二阶模型,我们无法控制选择更大度或更小度的顶点。因此提出了度有偏随机游走模型

  1. Big-Degree Biased Search (BDBS): 倾向于选择度数较大的邻居作为下一个顶点
  2. Small-Degree Biased Search (SDBS): 倾向于选择度数较小的邻居作为下一个顶点

可以看出BDBS 引导随机游走到(局部)中心,SDBS 引导随机游走到边界

——引入了一个基于 x 度的偏差系数 β ( x ) β (x) β(x),参数为 r。关键是使用 r 来控制两者之间的系数率
β ( x ) = d ( x ) + r   ( r > 0 ) \beta (x)=d(x)+r \space(r>0) β(x)=d(x)+r (r>0)
顶点 x1 和 x2 的偏置系数率计算如下:
β ( x 1 ) β ( x 2 ) = d ( x 1 ) + r d ( x 2 ) + r   ( r > 0 ) \frac{\beta(x_1)}{\beta(x_2)}=\frac{d(x_1)+r}{d(x_2)+r} \space (r>0) β(x2)β(x1)=d(x2)+rd(x1)+r (r>0)
显然, β ( x ) β (x ) β(x) d ( x ) d (x ) d(x) 线性增长,随着 r 的增加,偏差系数率 β ( x 1 ) / β ( x 2 ) β (x1)/β (x2) β(x1)/β(x2) d ( x 1 ) / d ( x 2 ) d (x1)/d (x2) d(x1)/d(x2) 平滑,这意味着 BDBS 趋势的程度下降。

SDBS (r < 0) 的策略可以类似于 BDBS。将r的不同情况组合在一起,最终公式如下:
β ( x ) = { d ( x ) + r ,   r > 0 1 d ( x ) − r ,   r < 0 1 ,   r = 0 . \beta(x)= \left\{ \begin{array}{l} d(x)+r,\space &r>0 \\ \frac{1}{d(x)-r}, \space &r<0 \\ 1, \space &r=0 \end{array} \right. . β(x)= d(x)+r, d(x)r1, 1, r>0r<0r=0.
结合之前的随机游走模型,最终转移概率 p 2 ′ ( x ∣ v , u ) p^′_2 (x |v, u) p2(xv,u) 定义如下:
p 2 ′ ( x ∣ v , u ) = α ( x ∣ v , u ) ⋅ β ( x ) ⋅ ∑ e ∈ E w ( e ) h ( v , e ) d ( v ) h ( x , e ) δ ( e ) Z p^′_2 (x|v, u)=\frac{\alpha(x|v,u) \cdot \beta(x) \cdot \sum_{e \in E} w(e)\frac{h(v,e)}{d(v)} \frac{h(x,e)}{\delta(e)}}{Z} p2(xv,u)=Zα(xv,u)β(x)eEw(e)d(v)h(v,e)δ(e)h(x,e)
其中 α ( ⋅ ) α (·) α() 是二阶搜索偏差, Z Z Z 是归一化因子。基于转移概率 p 2 ′ ( x ∣ v , u ) p^′_2 (x|v, u) p2(xv,u),我们可以在超网络中采样一系列顶点。

Hyper2vec算法

三部分:预处理过程、随机游走生成器、更新过程

  1. 预处理过程:处理超网络

    • 基于一阶随机游走模型生成概率矩阵 P
    • 二阶随机游走模型中由参数 p 和 q 指导概率矩阵调整
    • 有偏差随机游走模型中由参数 r 指导游走偏差,进一步调整P
  2. 随机游走生成器:生成一组随机游走

    ——修改后的转移概率在预处理过程中预先计算,使用别名采样(alias sample)在 O (1) 时间内有效地完成随机游走的每一步

  3. 更新过程:通过 Skip-gram 模型生成最终的嵌入结果

    ——Skip-gram是一种语言模型,它最大化句子中彼此接近的单词之间的共现概率(此处为随机游走路径)

    f : V → R d f : V → \mathbb R^d f:VRd 是从顶点到嵌入的中心映射函数, f ′ : V → R d f^′ : V → \mathbb R^d f:VRd 是一个上下文映射函数, C ( v ) C (v) C(v) 是 v 的上下文,我们模型的 Skip-gram 的优化问题公式如下:
    max ⁡ f ∑ v ∈ V ( ∑ c i ∈ C ( v ) ( f ( v ) ⋅ f ′ ( c i ) − l o g ∑ u ∈ V e f ( v ) ⋅ f ′ ( u ) ) ) \max_f \sum_{v \in V} \left( \sum_{c_i \in C(v)} \left(f(v) \cdot f'(c_i)-log \sum_{u \in V} e^{f(v) \cdot f'(u)} \right) \right) fmaxvV ciC(v)(f(v)f(ci)loguVef(v)f(u))

复杂度分析:

  • 计算概率矩阵 P 的时间复杂度为 O ( a n ) O (an) O(an),其中 n 是顶点的数量,a 是每个顶点的平均邻居数(对于现实世界的网络来说通常很小);
  • 对于有偏的二阶随机游走过程,存储每个顶点的邻居之间的互连很有用,最终时间复杂度为 O ( a 2 n ) O (a^2n) O(a2n)
  • 随机游走过程花费 O ( t l n ) O (tln) O(tln) 时间,其中 t 是每个顶点的游走次数,l 是游走长度。
算法 1:Hyper2vec 算法
Input:超图 G = ( V , E , w ) G = (V , E, w ) G=(V,E,w)、嵌入大小 d、窗口大小 k、行走次数 t、行走长度 l、返回参数 p、in-out 参数 q、偏置参数 r ;
Output:顶点表示矩阵 $\Phi \in \mathbb R^{
初始化游走为空;
根据等式(1)计算转移概率矩阵 $P \in \mathbb R^{
for u ∈ V u \in V uV do
——for v ∈ N G ( u ) v \in N_G (u) vNG(u) do
———— Π ⋅ u v ′ = β ( v ) ⋅ P u v \Pi'_{\cdot uv}=\beta(v) \cdot P_{uv} Πuv=β(v)Puv;
————for x ∈ N G ( v ) x \in N_G (v) xNG(v) do
——————$\Pi’_{uvx}=\alpha(x
for i from 1 to t do
——for v ∈ V v \in V vV do
———— w a l k = RandomWalk ( G , Π ′ , v , l ) walk = \text{RandomWalk}(G, \Pi', v, l) walk=RandomWalk(G,Π,v,l);
————把生成的游走序列 walk 添加到 walks 列表;
Φ = Skip-gram ( k , d , w a l k s ) \Phi=\text{Skip-gram}(k, d, walks) Φ=Skip-gram(k,d,walks);
Function w a l k = RandomWalk ( G , Π ′ , v , l ) walk = \text{RandomWalk}(G, \Pi', v, l) walk=RandomWalk(G,Π,v,l)
——游走序列 walk 初始化为[s];
——前一个节点 u 初始化为null
——for i from 2 to l l l do
———— v = v= v= 游走序列walk的最后一个节点;
———— x = AliasSample ( N G ( v ) , Π ′ u v ) ; x = \text{AliasSample}(N_G (v), \Pi′_{uv} ); x=AliasSample(NG(v),Πuv); (别名采样算法)
————把节点x添加到游走序列 walk中;
———— u = v u=v u=v;
——return walk;

NHNE:对偶机制非均匀超网络嵌入

  • 之前的研究只捕获了超边自己连接有哪些节点的信息(低阶信息),更详细的边缘特征(例如交互活动)可用于提高网络嵌入模型的性能;
  • 本文的超网络中超边具有特别含义:文章等。使用有偏的二阶随机游走来保留顶点的高阶接近度和结构属性。

核心思想

反转顶点和超边的定义以构建对偶超网络,使用上面的相同策略来生成对偶随机游走

  • 对偶超网络节点的嵌入对应于原始网络边的嵌入

  • 计算与 v 关联的超边的平均嵌入获得节点的嵌入。

    ——使用 f ∗ ( v ) f^∗ (v) f(v) 来表示从对偶超网络中学习到的 v 的嵌入:(加权平均)
    f ∗ ( v ) = 1 ∑ e ∈ E G ( v ) w ( e ) ∑ e ∈ E G ( v ) w ( e ) ⋅ f ( e ) , f^*(v)=\frac{1}{\sum_{e\in E_G(v)}w(e)}\sum_{e\in E_G(v)}w(e)\cdot f(e), f(v)=eEG(v)w(e)1eEG(v)w(e)f(e),
    其中 f ( e ) f (e) f(e) 是从对偶超网络中学习到的超边 e 的嵌入, E G ( v ) E_G (v) EG(v) 是与 v 关联的超边集。对偶模型的过程可以与原始模型同时进行。

——从原始超网络和对偶生成的嵌入是互补的

NHNE框架

NHNE

  1. 输入层:首先对超边(顶点集)进行编码

    • 使用集合中顶点的 one-hot 编码作为超边的编码: X e = R n × z X_e=\mathbb R^{n\times z} Xe=Rn×z(n 是顶点的数量,z 是最大边度)
    • 列向量是顶点的顺序,当 δ ( e ) < z δ (e) < z δ(e)<z 时,补充零向量
  2. 嵌入层

    • 结合嵌入层的权重, W ( e m b ) X e ∈ R d × z W^{(emb)}X_e \in \mathbb R^{d \times z} W(emb)XeRd×z 是超边 e 的初始矩阵表示
    • 我们使用 Hyper2vec(原始和对偶)学习的嵌入作为嵌入层的初始权重
  3. 网络层

    ——超网络通常是不均匀的(度不固定),超边可以看作是一个顶点序列,但顶点的顺序没有意义

    • 使用一维cnn(1D-CNN)模型,表示为 c ( ⋅ ) c (\cdot) c(), 由 1D 卷积层和最大池化层组成,输入 W ( e m b ) X e ∈ R d × z W^{(emb)}X_e \in \mathbb R^{d \times z} W(emb)XeRd×z,输出维度为 d 的 e 的潜在向量表示;
    1. 使用两个一维cnn分别捕获原始超网络和对偶超网络的隐藏信息

    2. 将它们连接为输出相似度层的输入

    3. 元组相似度函数 S (·) 定义如下:
      S ( e ) = σ ( W ( o u t ) [ c o ( W o ( e m b ) X e ) ; c d ( W d ( e m b ) X e ) ] + b ) , S(e)=\sigma(W^{(out)}[c_o( W_o^{(emb)}X_e);c_d(W^{(emb )}_dX_e)]+b), S(e)=σ(W(out)[co(Wo(emb)Xe);cd(Wd(emb)Xe)]+b),
      其中 σ ( ⋅ ) σ (·) σ() 是 sigmoid 函数;$ W_o^{(emb)}$ 和 W d ( e m b ) W^{(emb )}_d Wd(emb) 分别表示原始嵌入层和对偶嵌入层的权重; c o ( ⋅ ) co (·) co() c d ( ⋅ ) cd (·) cd() 分别表示原始和对偶1D-CNN; W ( o u t ) W^{(out)} W(out) 表示输出相似度层的权重; b 是偏差。

      损失函数定义如下:
      L = 1 ∣ E ∣ ∑ e ∈ E ( − log ⁡ S ( e ) + ∑ e n ∈ E n log ⁡ S ( e n ) ) \mathcal L=\frac{1}{|E|} \sum_{e\in E} \left(-\log S(e)+\sum_{e_n\in E_n}\log S(e_n)\right) L=E1eE(logS(e)+enEnlogS(en))
      其中 E n E_n En 是 e 的负样本。对于每个 e n ∈ E n e_n \in E_n enEn e n ∉ E e_n \notin E en/E ∣ e n ∣ = ∣ e ∣ |e_n | = |e | en=e

    ——使用RMSProp训练模型参数

  4. 输出层:输出相似度层

    结合嵌入层的节点嵌入,输出一个新的节点嵌入,同时输出一个元组相似度函数来评估顶点的元组关系。

    与 Hyper2vec 学习的嵌入相比,NHNE 更新的嵌入包含更多关于顶点之间元组关系的特征

实验

链接预测和顶点分类两个任务

数据集:

  • DBLP(合著)7,995 个顶点(作者)和 18,364 个超边(出版物)
  • IMDb(参演) 4,423 个顶点(演员)和 4,433 个超边(电影)

实验设置

Hyper2vec 和 NHNE 在两个学习任务上的性能,与以下算法进行对比:

  • 传统的成对网络嵌入方法:DeepWalk、Node2vec、LINE、AROPE、Metapath2vec——团扩展
  • 二分网络嵌入:BiNE——星形扩展
  • 超网络嵌入:HHE、HGE——(针对均匀超网络)将空顶点填充到度数小于最大度数的超边

对于所有方法,我们将嵌入大小统一设置为32。实验重复了五次。(具体各算法参数见原文)

链接预测

删除了部分边,任务是根据结果网络预测这些删除的边

顶点相似度:L1/L2距离、余弦相似度

设置

  • DBLP:随机删除 50% 的现有超边作为正测试样本,生成相同数量的负样本(随机选择顶点,若不是超边则保留)

  • IMDB:随机删除30%

——评估AUC的大小

结果

  • Hyper2vec 优于所有基线
  • NHNE 具有令人印象深刻的性能提升(原始模型和对偶模型生成的嵌入是互补的)
  • BiNE、HHE 和 HGE 在链接预测任务上表现不佳

顶点分类

大多数情况下为多标签分类

设置

按照作者/演员最多发表/参演的类型来打标签,删除一些频率非常小的类型。

逻辑回归用作外部分类器

使用Micro-F1 和 Macro-F1 来评估模型性能

结果

  • 我们的观察结果与链接预测的结果基本一致
  • Hyper2vec 在分类任务上优于所有基线
  • NHNE 具有令人印象深刻的性能提升
  • BiNE、HHE 和 HGE 在分类任务上表现不佳

参数敏感性

对于一阶随机游走模型,最重要的一点是确保模型经过充分训练并选择适当的窗口大小

对于二阶随机游走模型,具有 DFS 趋势的随机游走在所有任务和数据集上表现更好

偏差参数 r :DBLP 超网络不需要太多度的偏差趋势,IMDb 超网络设置 r = 4

——虽然参数设置是最优的,但 Hyper2vec 无法达到 NHNE 的性能

——这意味着原始超网络没有捕获所有信息,对偶超网络提供了与原始超网络互补的信息

权重初始化的效果(略)

总结

提出了一种名为 Hyper2vec 的灵活模型来学习超网络的嵌入

  • 引入了有偏的二阶随机游走策略
  • 使用Skip-gram 框架进行嵌入

将对偶超网络中的超边特征结合起来构建一个名为 NHNE 的基于 1D-CNN 的模型

  • 该模型有显着的改进,并在不同的任务击败了所有最先进的模型

未来工作

参数、预测任务和超参数结构之间的更深层次的关系

更智能的参数调整机制

动态调整偏差以捕获局部属性

其他偏差指标:局部聚类系数等

更多超网络的信息:顶点和超边的属性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/101356.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

leetcode 941. 有效的山脉数组

2023.9.2 可以用双指针法来做&#xff0c;left指向数组起点&#xff0c;right指向数组终点&#xff0c;left满足条件则左移&#xff0c;right满足条件则右移&#xff0c;最终两指针重合则返回true。 期间任一条件不满足则返回false。 代码如下&#xff1a; class Solution { p…

【小沐学Unity3d】3ds Max 多维子材质编辑(Multi/Sub-object)

文章目录 1、简介2、精简材质编辑器2.1 先创建多维子材质&#xff0c;后指定它2.2 先指定标准材质&#xff0c;后自动创建多维子材质 3、Slate材质编辑器3.1 编辑器简介3.2 编辑器使用 结语 1、简介 多维子材质&#xff08;Multi/Sub-object&#xff09;是为一个模形&#xff0…

JavaScript基础语法03——JS注释、结束符

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 今天继续学习JavaScript基础语法知识&#xff0c;注释和结束符&#xff0c;以下为学习笔记。 一、JavaScript注释 JavaScript注释有什么作用&#xff1f; JavaScript注释可以提高代码的可读性&#xff0c;能够帮助像…

深入了解Docker镜像操作

Docker是一种流行的容器化平台&#xff0c;它允许开发者将应用程序及其依赖项打包成容器&#xff0c;以便在不同环境中轻松部署和运行。在Docker中&#xff0c;镜像是构建容器的基础&#xff0c;有些家人们可能在服务器上对docker镜像的操作命令不是很熟悉&#xff0c;本文将深…

微信小程序手机号快速验证组件调用方式

目录 一、测试环境 二、问题现象 三、总结 手机号验证组件&#xff08;包括快速验证组件和实时验证组件&#xff09;调用后无法对事件进行回调这个问题&#xff0c;先说结论&#xff0c;以下是正确的使用方式&#xff1a; <!-- 手机号快速验证组件 --> <button op…

人员位置管理,点亮矿山安全之路

矿山作为一个高危行业&#xff0c;安全问题一直备受关注。人员定位置管理是现代矿山安全管理的重要一环&#xff0c;可以帮助企业更好地实现对人员的实时监控和管理。因此&#xff0c;矿山人员位置管理系统对于矿山安全生产和管理非常重要&#xff0c;可以帮助减少安全事故的发…

从零开发JavaWeb入门项目--十天掌握

原文网址&#xff1a;从零开发JavaWeb入门项目--十天掌握_IT利刃出鞘的博客-CSDN博客 简介 这是一个靠谱的JavaWeb入门项目实战&#xff0c;名字叫蚂蚁爱购。从零开发项目&#xff0c;视频加文档&#xff0c;十天就能学会开发JavaWeb项目&#xff0c;教程路线是&#xff1a;搭…

你知道用Woof创建的Linux吗?

Quirky 8.2 已发布&#xff0c;它是 Puppy Linux 的姊妹项目&#xff0c;是用一份叫 Woof 的定制工具创建的 Linux 发行。 新版本 Quirky 8.2 运行在 64 位的 x86 计算机上&#xff0c;主要提供了针对以前的 8.x 版本的增量改进。 Quirky Linux 8.2 x86_64 的代号是Xerus&…

【ES6】Proxy的高级用法,实现一个生成各种 DOM 节点的通用函数dom

下面的例子则是利用get拦截&#xff0c;实现一个生成各种 DOM 节点的通用函数dom。 <body> </body><script>const dom new Proxy({}, {get(target, property) {return function(attrs {}, ...children) {const el document.createElement(property);for …

PYTHON知识点学习-函数(下)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由 Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

每日一题 1372二叉树中的最长交错路径

题目 给你一棵以 root 为根的二叉树&#xff0c;二叉树中的交错路径定义如下&#xff1a; 选择二叉树中 任意 节点和一个方向&#xff08;左或者右&#xff09;。如果前进方向为右&#xff0c;那么移动到当前节点的的右子节点&#xff0c;否则移动到它的左子节点。改变前进方…

第9章 函数

本章介绍以下内容&#xff1a; 关键字&#xff1a;return 运算符&#xff1a;*&#xff08;一元&#xff09;、&&#xff08;一元&#xff09; 函数及其定义方式 如何使用参数和返回值 如何把指针变量用作函数参数 函数类型 ANSI C原型 递归 如何组织程序&#xff1f;C的设…

2023年的深度学习入门指南(26) - 在自己电脑上运行通义千问7b模型

2023年的深度学习入门指南(26) - 在自己电脑上运行通义千问7b模型 通过量化&#xff0c;通义千问4位量化的模型大小为5.86G&#xff0c;可以在3060等小于16G的家用GPU上也可以运行起来。 通义千问7b的量化运行 通义千问7b提供了4位量化好的Qwen/Qwen-7B-Chat-Int4模型&#…

kaggle赛后总结

1. 宽表 2.缺失值的处理方法 最简单粗暴的就是删除&#xff0c;这种情况是凡是有缺失值行数很少。均值替代。缺失值的行数比较多一点儿的时候&#xff0c;直接删除会影响样本数量&#xff0c;那就均值替代&#xff0c;或者中位数替代等方法。还有复杂的方法&#xff0c;把有缺…

阿里云对象存储oss-文件上传过程详解(两种方式)

阿里云对象存储oss-文件上传过程详解{两种方式} 方式一(最新代码,时间:2023/8/27)(1)如何配置系统变量(2)完整代码 方式二(跟黑马最新教程同代码)(1)在复制下来的代码中(2)完整代码 方式一(最新代码,时间:2023/8/27) 问题:需要配置系统变量才能够使用 (1)如何配置系统变量 以wi…

PYTHON知识点学习-函数(中)

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是Aileen★。希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由 Aileen_0v0★ 原创 CSDN首发&#x1f412; 如需转载还请通知⚠ &am…

Spring-Cloud-Openfeign如何传递用户信息?

用户信息传递 微服务系统中&#xff0c;前端会携带登录生成的token访问后端接口&#xff0c;请求会首先到达网关&#xff0c;网关一般会做token解析&#xff0c;然后把解析出来的用户ID放到http的请求头中继续传递给后端的微服务&#xff0c;微服务中会有拦截器来做用户信息的…

笔试题目回忆

&#xff08;1&#xff09;给出n,k&#xff0c;n表示数组个数&#xff0c;k表示要剔除的个数&#xff0c;接下来n个数为数组元素&#xff0c;求剔除k个数之后&#xff0c;其他所有数互为倍数&#xff0c;每个数最多剔除一次。 未检测代码&#xff0c;超时。 #include <ios…

软件外包开发人员分类

在软件开发中&#xff0c;通常会分为前端开发和后端开发&#xff0c;下面和大家分享软件开发中的前端开发和后端开发分类和各自的职责&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1. 前端开发&…

Dump文件的生成以及使用WinDbg静态分析

前言 本文章主要介绍了如何生成Dump文件&#xff0c;包括两种方式&#xff0c;通过代码生成和通过注册表生成。并且介绍了WinDbg工具的下载和使用&#xff0c;以及如何使用WinDbg工具去静态分析Dump文件&#xff0c;从而找到程序的崩溃位置。 生成Dump文件 通过调用WinAPI生成…