pytorch中nn.Conv1d功能介绍

        在使用Conv1d函数时,pytorch默认你的数据是一维的,比如一句话“深度学习”可以用一个一维数组 ['深', '度', '学', '习'] 表示,这个数据就是一维的。图片是二维数据,它有长宽两个维度。

        因此在使用 Conv1d 函数时,输入是一个三位数组,三个维度分别表示  (批量,通道,长度)

        使用 Conv2d 函数时,输入是一个四维数组,四个维度分别是(批量,通道,行,列),这里不详细介绍Conv2d。

        (批量即 batch_size)

        用如下例子介绍Conv1d(input_channel=3, output_channel=4, kernel_size=1),输入的例子数据为一句话,这句话有5个单词,假设每个单词都由三个字母组成,就相当于每个单词有3个通道,假设这句话是 ['abc', 'def', 'ghi', 'jkl', 'mno'],这些数据放在图1所示的矩阵里,可见长度为5,深度方向为3。

图1. 数据存储格式

         output_channel=4,即由四个卷积核,每个卷积核的通道数和输入的通道数相同,这里是3,如图2所示,第一个元素'abc'的三个通道'a', 'b', 'c'输入第一个卷积核,得到红色数字,第二个单词经过卷积核得到黄色数字,排成一列得到第一个通道,四个卷积核得到输出的四个通道。

        如果一个batch里有很多句话,那么分别对每句话进行上述计算即可。

图2. 单个channel计算过程

        测试代码:

        输入数据的 batch_size=10,通道数为3,长度为5。卷积核大小为1,卷积核通道数和输入数据的通道数一致。输出数据通道数为7,卷积核的数量和输出数据的通道数一致。

        因为卷积核大小为1,所以输出长度与输入长度一致,卷积不影响批量数(batch_size),因此输出数据的(批量,通道,长度)应为(10, 7, 5)

from torch import nn

    conv1 = nn.Conv1d(in_channels=3, out_channels=7, kernel_size=1)
    input = torch.randn(10, 3, 5)
    out = conv1(input)
    print(out.size())

运行后的输出如下图所示,可见分析正确。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100917.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Three.js相机参数及Z-Fighting问题的解决方案

本主题讨论透视相机以及如何为远距离环境设置合适的视锥体。 推荐:用 NSDT编辑器 快速搭建可编程3D场景 透视相机是一种投影模式,旨在模仿人类在现实世界中看待事物的方式。 这是渲染 3D 场景最常用的投影模式。 - three.js 如果你看一下 Three.js 文档…

数据结构(Java实现)-java对象的比较

元素的比较 基本类型的比较 在Java中&#xff0c;基本类型的对象可以直接比较大小。 对象比较的问题 Java中引用类型的变量不能直接按照 > 或者 < 方式进行比较 默认情况下调用的就是equal方法&#xff0c;但是该方法的比较规则是&#xff1a;没有比较引用变量引用对象的…

Linux服务器中创建SVN项目详细步骤

一、Linux服务器中的SVN安装和搭建项目环境可以参考一下文章: 1、《阿里云服务器搭建》------搭建SVN服务 2、在一个服务器的svn上&#xff0c;设置一个端口号对应一个项目 3、如何解决Linuxsvn无法显示日志的问题 二、Linux服务器中的SVN项目如何添加项目的忽略文件&#xff1…

多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比

多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比 目录 多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比 模型…

Elasticsearch 集成--Flink 框架集成

一、Flink 框架介绍 Apache Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。 Apache Spark 掀开了内存计算的先河&#xff0c;以内存作为赌注&#xff0c;赢得了内存计算的飞速发展。 但是在其火热的同时&#xff0c;开发人员发现&#xff0c;在 Spark …

数据结构入门 — 队列

本文属于数据结构专栏文章&#xff0c;适合数据结构入门者学习&#xff0c;涵盖数据结构基础的知识和内容体系&#xff0c;文章在介绍数据结构时会配合上动图演示&#xff0c;方便初学者在学习数据结构时理解和学习&#xff0c;了解数据结构系列专栏点击下方链接。 博客主页&am…

防火墙日志分析工具

防火墙提供对进入组织网络的网络流量的来源和类型的可见性&#xff0c;这使得防火墙日志成为重要的信息源&#xff0c;包括所有连接的源地址、目标地址、协议和端口号等详细信息&#xff0c;此信息可以提供对未知安全威胁的见解&#xff0c;是威胁管理中的重要工具。 防火墙日…

Git学习——细节补充

Git学习——细节补充 1. git diff2. git log3. git reset4. git reflog5. 提交撤销5.1 当你改乱了工作区某个文件的内容&#xff0c;想直接丢弃工作区的修改时5.2 当提交到了stage区后&#xff0c;想要退回 6. git remote7. git pull origin master --no-rebase8. 分支管理9. g…

16 Linux之JavaEE定制篇-搭建JavaEE环境

16 Linux之JavaEE定制篇-搭建JavaEE环境 文章目录 16 Linux之JavaEE定制篇-搭建JavaEE环境16.1 概述16.2 安装JDK16.3 安装tomcat16.4 安装idea2020*16.5 安装mysql5.7 学习视频来自于B站【小白入门 通俗易懂】2021韩顺平 一周学会Linux。可能会用到的资料有如下所示&#xff0…

1.12 进程注入ShellCode套接字

在笔者前几篇文章中我们一直在探讨如何利用Metasploit这个渗透工具生成ShellCode以及如何将ShellCode注入到特定进程内&#xff0c;本章我们将自己实现一个正向ShellCodeShell&#xff0c;当进程被注入后&#xff0c;则我们可以通过利用NC等工具连接到被注入进程内&#xff0c;…

2022年09月 C/C++(五级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:城堡问题 1 2 3 4 5 6 7 ############################# 1 # | # | # | | # #####—#####—#—#####—# 2 # # | # # # # # #—#####—#####—#####—# 3 # | | # # # # # #—#########—#####—#—# 4 # # | | | | # # ############################# (图 1) # = Wall …

【两个有序数组合并】

问题描述: 给定两个有序整数数组 A 和 B&#xff0c;将B合并到A中&#xff0c;使得 A 成为一个有序数组。 说明: 初始化 A 和 B 的元素数量分别为 m 和 n。A有足够的空间&#xff08;空间大小大于或等于 m n&#xff09;来保存 B 中的元素。默认升序。 输入输出描述&#xf…

使用HTTPS模式建立高效爬虫IP服务器详细步骤

嘿&#xff0c;各位爬虫小伙伴们&#xff01;想要自己建立一个高效的爬虫IP服务器吗&#xff1f;今天我就来分享一个简单而强大的解决方案——使用HTTPS模式建立工具&#xff01;本文将为你提供详细的操作步骤和代码示例&#xff0c;让你快速上手&#xff0c;轻松建立自己的爬虫…

【数据结构】队列---C语言版(详解!!!)

文章目录 &#x1f438;一、队列的概念及结构&#x1f344;1、队列的概念定义&#x1f344;2、动图演示 &#x1f438;二、队列的实现&#x1f438;三、链表结构队列详解&#x1f34e;创建队列的结构⭕接口1&#xff1a;定义结构体&#xff08;QNode、Queue&#xff09;⭕接口2…

构造函数和析构函数(个人学习笔记黑马学习)

构造函数:主要作用在于创建对象时为对象的成员属性赋值&#xff0c;构造函数由编译器自动调用&#xff0c;无须手动调用。析构函数:主要作用在于对象销毁前系统自动调用&#xff0c;执行一些清理工作。 #include <iostream> using namespace std;//对象初始化和清理class…

Nginx实现自签名SSL证书生成与配置

Nginx实现自签名SSL证书生成与配置 一、Nginx实现自签名SSL证书生成与配置1.名词介绍2.生成私钥3.生成公钥4.生成解密的私钥key5.签名生成证书6.配置证书并验证 二、总结 一、Nginx实现自签名SSL证书生成与配置 1.名词介绍 &#xff08;1&#xff09;key 私钥 明文–自己生成…

如何一键批量查询全部物流信息?

在日常工作中&#xff0c;快递物流信息的查询是一项常规任务。然而&#xff0c;这个过程往往既耗时又费力&#xff0c;尤其是在面对大量单号的情况下。为了解决这个问题&#xff0c;我们推荐使用固乔快递查询助手&#xff0c;一款能够快速、准确地查询快递物流信息的软件。 首先…

K8s:一文认知 CRI,OCI,容器运行时,Pod 之间的关系

写在前面 博文内容整体结构为结合 华为云云原生课程 整理而来,部分内容做了补充课程是免费的&#xff0c;有华为云账户就可以看&#xff0c;适合理论认知&#xff0c;感觉很不错。有需要的小伙伴可以看看&#xff0c;链接在文末理解不足小伙伴帮忙指正 对每个人而言&#xff0c…

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例...

原文链接&#xff1a;http://tecdat.cn/?p23426 混合线性模型&#xff0c;又名多层线性模型(Hierarchical linear model)。它比较适合处理嵌套设计(nested)的实验和调查研究数据&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 相关视频 序言 此外&#xff0…

Navicat16连接Oracle报错:Oracle library is not loaded

1、有时候我们在用navicat的时候连接oracle的时候&#xff0c;它会提示我们Oracle library is not loaded&#xff0c;这时候我们要首先验证本机上是否已安装oracle的客户端&#xff0c;如果已安装客户段&#xff0c;navicat中的oci.dll选择我们安装的客户段的oci.dll文件 2、…