深度学习经典检测方法的概述

深度学习经典的检测方法

two-stage(两阶段):Faster-rcnn Mask-Rcnn系列

两阶段(two-stage)是指先通过一个区域提取网络(region proposal network,RPN)生成候选框,再通过一个分类回归网络进行目标检测。Faster R-CNN和Mask R-CNN就是经典的两阶段目标检测模型。
Faster R-CNN将RPN和分类回归网络结合在一起,可以实现端到端的训练和推理。Mask R-CNN在Faster R-CNN的基础上增加了一个分割分支,可以同时进行目标检测和实例分割。两阶段模型在准确率上表现优秀,但相对于单阶段模型速度较慢。

one-stage(单阶段):YOLO系列

YOLO(You Only Look Once,你只需要看一次)系列是一种先进的目标检测算法,其中包括YOLOv1、YOLOv2、YOLOv3和YOLOv4等版本。这些算法采用了单阶段的检测方式,即所有目标的检测和分类都在一个单独的网络中完成。在YOLO系列中,图像被分成一个固定的网格,每个网格预测一个定量的边界框和类别。相比于传统的两阶段检测(如Faster R-CNN和Mask R-CNN),YOLO系列具有更快的检测速度和更高的实时性能,但也存在一定的精度损失。
在这里插入图片描述

one-stage:

最核心的优势:速度非常快,适合做实时检测任务!
但是缺点也是有的,效果通常情况下不会太好!
在这里插入图片描述

two-stage:

速度通常较慢(5FPS),但是效果通常还是不错的!
非常实用的通用框架MaskRcnn,建议熟悉下!
在这里插入图片描述

指标分析

map指标:综合衡量检测效果;单看精度和recall不行吗?
在这里插入图片描述在这里插入图片描述检测任务中的精度和召回率分别代表什么?

在机器学习和数据挖掘中,精度和召回率是常用的评估指标,用于评估分类模型的效果。它们通常用于度量分类模型的性能,以确定模型在确定类别时的准确性和完整性。

精度指的是模型预测正确的样本数占总样本数的比例,即:

精度 = T P + T N T P + T N + F P + F N 精度 = \frac{TP + TN}{TP + TN + FP + FN} 精度=TP+TN+FP+FNTP+TN

其中, T P TP TP 表示真正例(True Positive),即正类被预测为正类的数量; T N TN TN 表示真负例(True Negative),即负类被预测为负类的数量; F P FP FP 表示假正例(False Positive),即负类被预测为正类的数量; F N FN FN 表示假负例(False Negative),即正类被预测为负类的数量。

召回率指的是模型能够正确识别出的正类样本占所有正类样本的比例,即:

召回率 = T P T P + F N 召回率 = \frac{TP}{TP + FN} 召回率=TP+FNTP

其中, T P TP TP F N FN FN 的含义与精度相同。

简单来说,精度反映了模型分类的准确性,而召回率反映了模型覆盖所有样本的能力。在实际应用中,需要根据具体的场景和需求来选择更为重要的指标。
在这里插入图片描述
基于置信度阈值来计算,例如分别计算0.9;0.8;0.7

0.9时:TP+FP = 1,TP = 1 ;FN = 2;Precision=1/1;Recall=1/3;
在这里插入图片描述如何计算AP呢?需要把所有阈值都考虑进来;MAP就是所有类别的平均
在这里插入图片描述
在深度学习中,mAP(mean Average Precision)是一种广泛使用的评估指标,其用于衡量在目标检测任务中模型的性能。mAP可以简单地理解为所有类别的平均精度。

在目标检测中,一个模型会生成一系列的预测结果。每个预测结果包含一个目标的类别和位置信息,可能与实际的目标进行匹配,也可能与其它目标进行匹配。通过比较预测结果和真实目标之间的差异,我们可以计算出模型的精度。

在多类别情况下,我们需要计算每个类别的精度。对于每个类别,我们可以计算出一个AP(Average Precision)值。AP值是在不同阈值下的精度(Precision)和召回率(Recall)的计算结果。AP值是一个0到1之间的值,0表示模型没有正确预测任何目标,1表示模型完全正确地预测了所有目标。

平均精度mAP是所有类别的AP值的平均值。

计算mAP的公式如下:

m A P = ∑ i = 1 c A P i c mAP=\frac{\sum_{i=1}^cAP_i}{c} mAP=ci=1cAPi

其中,c表示类别数,APi表示第i个类别的AP值。

mAP是一个常用的目标检测评估指标,因为它能够同时考虑模型的准确性和召回率。在实际使用中,我们会使用各种工具和框架来计算mAP值,比如Python的sklearn.metrics库。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

信息技术01--初/高中--选择真题汇总(197道题)

文章目录 1 真题 01-102 真题 11-203 真题 21-304 真题 31-405 真题 41-506 真题 51-607 真题 61-708 真题 71-809 真题 81-9010 真题 91-10011 真题 101-11012 真题 111-12013 真题 121-13014 真题 131-14015 真题 141-15016 真题 151-16017 真题 161-17018 真题 171-18019 真…

计算机网络 概述部分

目录 计算机网络在信息时代的作用 计算机网络的重要特征 网络,internet,Internet的区别 局域网 广域网的区别 网络协议的分层 计算机网络在信息时代的作用 计算机网络的重要特征 连通性:彼此联通,交换信息 共享性:信息共享…

FPGA时序分析与约束(3)——时钟不确定性

一、前言 在之前的文章中,我们介绍了组合电路的时序和时序电路的时序问题,在阅读本文章之前,强烈推荐先阅读完本系列之前的文章,因为这是我们继续学习的理论的理论基础,前文链接: FPGA时序分析与约束&…

【K8S系列】深入解析k8s网络插件—Cilium

序言 做一件事并不难,难的是在于坚持。坚持一下也不难,难的是坚持到底。 文章标记颜色说明: 黄色:重要标题红色:用来标记结论绿色:用来标记论点蓝色:用来标记论点 在现代容器化应用程序的世界中…

朝夕光年游戏自动化测试实践

朝夕光年是面向全球用户与开发者的游戏研发与发行业务品牌,致力于服务全球玩家,帮助玩家在令人惊叹的虚拟世界中一起玩耍与创造。 在游戏的研发过程中,游戏自动化一直是开展难度较大的工程,具体包括机房机架、设备调度、软件框架、…

【Pandas 入门-5】Pandas 画图

Pandas 画图 除了结合 matplotlib 与 seaborn 画图外,Pandas 也有自己的画图函数plot,它的语法一般为: DataFrame.plot(xNone,yNone, kindline,subplotsFalse, titleNone)x横坐标数据y纵坐标数据kind默认是线图,还可以是‘bar’…

c++ opencv将彩色图像按连通域区分

要将彩色图像按连通域区分&#xff0c;您可以使用 OpenCV 中的 cv::connectedComponents 函数。 下面是一个简单的示例代码&#xff0c;说明如何使用 cv::connectedComponents 函数来检测并标记图像中的连通域&#xff1a; #include <opencv2/opencv.hpp> #include <…

Docker技术--Docker中的网络问题

1.docker中的网络通信 如果想要弄清楚docker中的网络通信问题,其实需要弄清楚这几个问题就可以:容器与容器之间的通信、容器与外部网络之间的通信、外部网络与容器之间的通信。 -a:容器与容器之间的通信,如下所示: 在默认情况下,docker使用网桥(Bridge模式)与NAT通信。这…

CSS中你不得不知道的css优先级

在我们定义css样式时&#xff0c;经常出现两个或更多规则应用在同一元素上&#xff0c;这时就会出现优先级的问题。其实css为每一种基础选择器都分配了一个权重。 我们简化理解&#xff1a; CSS权重计算&#xff1a; 最顶层&#xff1a;!important 权重值&#xff1a;…

算法通关村14关 | 堆结构

1. 堆的概念与特征 堆是将一组数据按照完全二叉树的存储顺序&#xff0c;将数据存储在一维数组中的结构&#xff0c;对的结构有两种&#xff0c;一种称为大顶堆&#xff0c;一种称为小顶堆。 小顶堆&#xff1a;任意节点的值均小于等于它的左右孩子&#xff0c;并且最小的值位于…

数据通信——传输层TCP(可靠传输原理的ARQ)

引言 上一篇讲述了停止等待协议的工作流程&#xff0c;在最后提到了ARQ自动请求重传机制。接下来&#xff0c;我们就接着上一篇的篇幅&#xff0c;讲一下ARQ这个机制 还是这个图来镇楼 ARQ是什么&#xff1f; 发送端对出错的数据帧进行重传是自动进行的&#xff0c;因而这种…

【iOS】折叠cell

文章目录 前言一、实现效果二、折叠cell的实现原理三、实现折叠cell的高度变化四、实现选中点击的单元格总结 前言 在暑假的3GShare中用到了折叠cell控件&#xff0c;特此总结博客记录 一、实现效果 二、折叠cell的实现原理 首先我们需要知道ScrollView的是TableView的父类&a…

Java从入门到精通-流程控制(一)

流程控制 1.复合语句 复合语句&#xff0c;也称为代码块&#xff0c;是一组Java语句&#xff0c;用大括号 {} 括起来&#xff0c;它们可以被视为单个语句。复合语句通常用于以下情况&#xff1a; - 在控制结构&#xff08;如条件语句和循环&#xff09;中包含多个语句。 - …

肖sir__linux详解__002(系统命令)

linux系统命令 1、df 查看磁盘使用情况 &#xff08;1&#xff09;df 查看磁盘使用情况&#xff08;按kb单位显示&#xff09; &#xff08;2&#xff09;df -h 按单位显示磁盘使用情况 2、top 实时查看动态进程 &#xff08;1&#xff09;top 详解&#xff1a; 第一行&…

Python网络编程详解

概要 Python作为一种强大的编程语言&#xff0c;拥有丰富的网络编程库和框架&#xff0c;能够方便地进行各种网络编程任务。本文将介绍Python网络编程的基础知识&#xff0c;包括socket编程和HTTP协议&#xff0c;然后深入探讨一些流行的Python Web框架&#xff0c;包括Flask和…

Android JNI系列详解之ndk编译工具环境变量配置

一、前提 之前是只介绍了CMake编译工具的使用&#xff0c;现在介绍另一种原生&#xff08;NDK自带的脚本工具&#xff09;自带的编译方式&#xff1a;ndk-build&#xff0c;想要使用ndk-build编译工程&#xff0c;我们需要配置全局的环境变量。 二、配置环境变量 找到ndk在电脑…

2023腾讯全球数字生态大会预约报名入口

报名入口 2023腾讯全球数字生态大会即将开启&#xff0c;点击打开预约报名入口。 主题与介绍 主题 2023腾讯全球数字生态大会将聚焦产业未来发展新趋势&#xff0c;针对云计算、大数据、人工智能、安全、SaaS等核心数字化工具做关键进展发布&#xff0c;并联合生态伙伴推出最…

合宙Air724UG LuatOS-Air LVGL API控件--日历 (Calendar)

日历 (Calendar) LVGL 提供了一个用来选择和显示当前日期的日历控件。 示例代码 – 高亮显示的日期 highlightDate lvgl.calendar_date_t() – 日历点击的回调函数 – 将点击日期设置高亮 function event_handler(obj, event) if event lvgl.EVENT_VALUE_CHANGED then da…

WIFI与BT的PCB布局布线注意事项

1、模块整体布局时&#xff0c;WIFI模组要尽量远离DDR、HDMI、USB、LCD电路以及喇叭等易干扰模块或连接座&#xff1b; 2、晶体电路布局需要优先考虑&#xff0c;布局时应与芯片在同一层并尽量靠近放置以避免打过孔&#xff0c;晶体走线尽可能的短&#xff0c;远离干扰源&…

C# 跨线程访问窗体控件

在不加任何修饰的情况下&#xff0c;C# 默认不允许跨线程访问控件&#xff0c;实际在项目开发过程中&#xff0c;经常使用跨线程操作控件属性&#xff0c;需要设置相关属性才能正确使用&#xff0c;两种方法设置如下&#xff1a; 方法1&#xff1a;告诉编译器取消跨线程访问检…