【C++从0到王者】第二十五站:多继承的虚表

文章目录

  • 前言
  • 一、多继承的虚函数表
  • 二、菱形继承与菱形虚拟继承的虚函数表
    • 1.菱形继承
    • 2.菱形虚拟继承的虚函数表
  • 三、抽象类
    • 1.抽象类的概念
    • 2.接口继承与实现继承
  • 总结


前言

其实关于单继承的虚函数表我们在上一篇文章中已经说过了,就是派生类中的虚表相当于拷贝了一份父类的虚表,然后派生类中将重写的虚函数进行覆盖。如果派生类中也有自己的虚函数,但是并没有与父类构成重写,那么这个虚函数也是在虚表中的,不过不同的是vs2022的监视窗口是不会显示自己的虚函数的。但是我们可以在内存中观测到这个虚函数,并且我们进行验证,使用了一些非正常手段去调用这个函数从而证明这个地址确实是这个虚函数的地址。还有一点需要注意的是虚表是存储在代码段的,即常量区。需要注意我们验证的方法就是打印出每个区域的地址进行对比,从而推测出虚表所在的地方。


一、多继承的虚函数表

我们先看下面这段代码,猜一猜运行结果为多少?

class Base1 {
public:
	virtual void func1() { cout << "Base1::func1" << endl; }
	virtual void func2() { cout << "Base1::func2" << endl; }
private:
	int b1;
};
class Base2 {
public:
	virtual void func1() { cout << "Base2::func1" << endl; }
	virtual void func2() { cout << "Base2::func2" << endl; }
private:
	int b2;
};
class Derive : public Base1, public Base2 {
public:
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func3" << endl; }
private:
	int d1;
};
int main()
{
	cout << sizeof(Derive) << endl;
	return 0;
}

运行结果如下所示:结果是20

image-20230828164831224

那么为什么是20呢?我们画出如下的对象模型

即,Derive这个对象由于继承了Base1和Base2,那么首先他的Base1由于先继承所以在前面,而Base1中有一个虚表指针,还有一个int类型的变量,所以占四个字节,然后内部对齐后,在与Base2和int进行对其,于是最终结果就是20了

image-20230828165053500

这样的样子与我们之前的单继承是十分相似的,派生类是不会单独产生虚表的,派生类都是继承了父类,直接使用派生类中的父类的虚表即可。所以这里有两个虚表

所以我们就更能深刻里面多态的一个条件是父类的指针或者引用了。

如下面所示,是监视窗口中的场景。

image-20230828165912026

可以看到两个基类的func1都被重写了。如下所示

image-20230828171257689

不过这里的问题主要还是在于监视窗口并不可信,因为它这里并没有func3这个虚函数的地址。

根据单继承的思路,我们这里的func3这个虚函数是会存储在某一个虚表中的,那么是存储在Base1还是Base2还是两个都存储呢?

我们可以使用之前的方案,强行找出虚表的地址,进行调用函数来研究

typedef void(*FUNC_PTR)();
void Print_VFT(FUNC_PTR* table)
{
	for (int i = 0; table[i] != nullptr; i++)
	{
		printf("[%d]:%p->", i, table[i]);
		table[i]();
	}
	cout << endl;
}
class Base1 {
public:
	virtual void func1() { cout << "Base1::func1" << endl; }
	virtual void func2() { cout << "Base1::func2" << endl; }
private:
	int b1;
};
class Base2 {
public:
	virtual void func1() { cout << "Base2::func1" << endl; }
	virtual void func2() { cout << "Base2::func2" << endl; }
private:
	int b2;
};
class Derive : public Base1, public Base2 {
public:
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func3" << endl; }
private:
	int d1;
};
int main()
{
	Derive d;
	int vft1 = *(int*)&d;
	//int vft2 = *(int*)((char*)&d + sizeof(Base1));
	Base2* ptr = &d;
	int vft2 = *(int*)ptr;
	Print_VFT((FUNC_PTR*)vft1);
	Print_VFT((FUNC_PTR*)vft2);

	return 0;
}

关于上面的代码,我们需要注意的是vft2的值的取法,即Base2中的虚表的地址如何取出来。我们可以自己去计算偏移量从而得出结果,当然我们也可以直接运用切片的特性,直接拿到了地址,然后在类型转换即可

运行结果如下:

image-20230828173942134

可以看到func3的地址其实是存储在Base1的虚表中的。

所以**多继承派生类的未重写的虚函数放在第一个继承基类部分的虚函数表中 **

image-20230828174522144

如上是Derive的虚表模型了,但是我们会发现一个很奇怪的问题。那就是明明两个基类的func1都被重写了,但是他们的地址为什么不一样呢?

image-20230828174708860

所以这里出现了一个很奇怪的问题,虽然他们两个函数的地址不一样,但是最终却调用到同一个函数去了。

按照单继承的理论,这个func1只有一个地址才是比较合理的,毕竟这个func1只生成一份才是最好的。

为什么这里重写了func1,但是Base1和Base2的地址不一样呢?

面对这个问题,网上绝大多数是没有答案的。于是我们最好的办法就是看汇编

上面的问题换言之,就是下面这段代码,两个调用结果一样,但是过程出现了不一样的情况

image-20230828175549699

我们直接进入汇编模式

image-20230828182948017

如上是需要注意的事件,call之前都是在想办法取出虚表中的地址,我们可以直接观测eax的值,可以发现确实是Base1虚表中这个fun1函数的地址。

然后我们继续往深走,即进入call的内部,我们就会进入到一个jmp函数

image-20230828183020737

也就是说,我们call的地址只是一个jmp的地址,一般jmp后面的才是真正的地址

如下所示,果然如此,jmp后面才会真正的调用func1函数

image-20230828183050408

即如下所示的调用关系

image-20230828183140541

我们再来观测后半部分代码(注意:这里我的代码前半部分的代码地址改变了,这里其实只是我的一个小失误操作,不过不影响后序现象)

image-20230828183308062

这里与前面的现象是一样的,我们继续深入调查

image-20230828183328662

在这里我们发现了一些需要注意的问题,这里的jmp的地址首先和前面jmp指令的地址是不一样的,其次jmp后面所跳转的地址也是不一样的。

现在我们只能继续深入调查了。

image-20230828183653129

在这里我们发现,它没有直接像前面的一样直接跳转到函数,而是先对ecx减去8了。

要知道,ecx一般存储的是this指针的值。所以这里是对this指针减去8

减去以后ecx的值发生了变化

image-20230828183913396

然后我们继续进入jmp内部

image-20230828184000274

这个时候我们发现,jmp的地址着不就是Base1虚表中的func1的地址吗?

所以现在就来了一个大折返,直接与前面的一样了

image-20230828184407048

也就是说,这里只是多走了几步

总之,无非就是后半部分多走了很多的代码。但是最终的结果是一样的。

image-20230828184740930

那么编译器究竟为什么要这么做呢?我们知道中间多出来几步中,有一步是让this指针减去8。那么为什么要减去8呢?

我们也许会注意到我们的d的对象模型,ptr2和ptr1正好相差8

image-20230828185141277

我们先想清楚func1是谁的成员函数,其实是Derive的成员函数。而我们想要调用Derive的成员函数,那么这个this指针应该指向的是d对象,ptr1和ptr2就是充当着this指针,而我们现在呢?ptr1指向的恰好就是起始地址,刚好巧了,所以它就不需要动。ptr2指向的是Base2的那一部分。它的功能就是找到对应的虚表,找到对应的函数地址以后,我们也不能直接对其进行call调用,因为实际调用成员函数的时候必须要传ecx的,那么我们就需要将他调整到d的起始位置。

而且我们也注意到了,这里的黄色部分刚好就是把ptr2的值交给了ecx,这里就说明了ecx存储的是this指针

image-20230828191441105

相应的,ptr1的调用和ptr2是类似的,先要去把this指针给处理好

image-20230828231412471

ptr1的好处在于它的this指针本身就是d的起始位置,本身就是正确的,所以这个this指针不需要进行调整,所以直接call函数即可

而ptr2可惜它指向的并非起始位置,所以得先绕个弯子,先把ecx给修正为正确的this指针,才能去调用函数。

这样的话,我们就已经彻底的辨析了下面的代码了,三个的本质调用的是一个函数,不过前两个是多态调用,后面是普通调用。ptr2的调用由于this指针的问题,所以需要进行修正。

int main()
{
	Derive d;
	Base1* ptr1 = &d;
	ptr1->func1();

	Base2* ptr2 = &d;
	ptr2->func1();

	Derive* ptr3 = &d;
	ptr3->func1();
	return 0;
}

也就是说,他们的调用可以分为两部分:一部分是传this指针,第二部分就是call地址。

当然我们这里的都是vs2022的行为,不同的编译器可能有不同的效果

那么比如说有没有可能我们可以让多继承中的两个地址是一样的呢?其实是可以的,我们只要调用之前去修正this指针就可以了。因为vs采用的是调用的过程中修正,所以他们的地址只能不一样了。

二、菱形继承与菱形虚拟继承的虚函数表

1.菱形继承

我们先简单的写一个菱形继承,如下所示,下面也刚好包括了虚函数的样例

class A
{
public:
	virtual void func1()
	{
		cout << "A::func1()" << endl;
	}
	int _a;
};
class B : public A
{
public:
	int _b;
};
class C : public A
{
public:
	int _c;
};
class D : public B, public C
{
public :
	int _d;
};
int main()
{
	D d;
	d.B::_a = 1;
	d.C::_a = 2;
	d._b = 3;
	d._c = 4;
	d._d = 5;

	return 0;
}

其实但对于菱形继承还是比较简单的。因为菱形继承我们大可以抽象为,两个类分别虚继承,然后一个类多继承即可

我们根据菱形继承的知识,不难画出如下对象模型

image-20230829002844902

调试窗口的运行结果如下

image-20230829003422554

所以菱形继承其实和多继承是一样的

即便是每个类里面都有一个虚函数也是一样的,因为继承以后,B使用A里面的虚表,C使用A里面的虚表,D使用B和C的虚表。对象模型里面存储的是虚表指针,所以对象模型并未发生改变,改变的只是虚表指针指向的内容,就是虚表。根据单继承和多继承的规则,B里面的虚函数并未构成重写,则直接衔接在A的虚函数表后面。C同理,D中的虚函数则放在B的虚表中,即B中的A虚表

image-20230829003938220

我们可以验证一下

typedef void(*FUNC_PTR)();
void Print_VFT(FUNC_PTR* table)
{
	for (int i = 0; table[i] != nullptr; i++)
	{
		printf("[%d]:%p->", i, table[i]);
		table[i]();
	}
	cout << endl;
}
class A
{
public:
	virtual void func1()
	{
		cout << "A::func1()" << endl;
	}
	int _a;
};
class B : public A
{
public:
	virtual void func2()
	{
		cout << "B::func2()" << endl;
	}
	int _b;
};
class C : public A
{
public:
	virtual void func3()
	{
		cout << "C::func3()" << endl;
	}
	int _c;
};
class D : public B, public C
{
public:
	virtual void func4()
	{
		cout << "D::func4()" << endl;
	}
	int _d;
};
int main()
{
	D d;
	d.B::_a = 1;
	d.C::_a = 2;
	d._b = 3;
	d._c = 4;
	d._d = 5;
	int vft1 = *(int*)&d;
	C* ptr = &d;
	int vft2 = *(int*)ptr;
	Print_VFT((FUNC_PTR*)vft1);
	Print_VFT((FUNC_PTR*)vft2);
	return 0;
}

image-20230829004654186

可见,确实如此。

但是以上是没有发生重写/覆盖的情况下的。我们可以试一下发生了重写覆盖的情况

如下图所示,是B重写/覆盖了A的情况下,也是很好理解的,其实就是相当于B的虚函数地址覆盖了A的虚函数地址。D并不会在意B里面A的细节,它只关心虚表中的函数是否产生了重写/覆盖。如果是的话则,覆盖即可。没有就往后续

image-20230829005041545

我们继续观察,当A与D产生了重写,但A没有与B产生重写的条件下,可见与我们前面所说的是一致的

image-20230829005354773

当A、B、D都产生了重写的情况如下

image-20230829005440642

当A、B、D和A、C产生了重写如下所示

image-20230829005516633

2.菱形虚拟继承的虚函数表

我们使用与前文类似的代码,不过我们这次使用菱形虚拟继承

class A
{
public:
	virtual void func1()
	{
		cout << "A::func1()" << endl;
	}
	int _a;
};
class B : virtual public A
{
public:
	int _b;
};
class C : virtual public A
{
public:
	int _c;
};
class D : public B, public C
{
public:
	int _d;
};
int main()
{
	D d;
	d.B::_a = 1;
	d.C::_a = 2;
	d._b = 3;
	d._c = 4;
	d._d = 5;
	return 0;
}

我们根据菱形虚拟继承的对象模型,不难得出以下的内存图

image-20230831165808761

我们可以使用内存图来进一步观察

image-20230831170138194

这里就是因为菱形虚拟继承会将B和C中的A都放到了公共部分

此时的按照菱形虚拟继承的内存分配来看是没有什么大问题的,但是当我们B和C同时对A的虚函数进行了重写的时候,由于是菱形虚拟继承。所以都会让A给放到公共部分,实际上是B和C共享的A。两个都一起重写,导致编译器不知道什么该听哪一个的,所以就报错了

image-20230831172324781

主要还是因为B和C都想要去重写这个A,才导致的问题。而如果只是一个菱形继承的话,就不会出现这个问题,因为各自重写各自的即可。

对于上面的情况,我们有两种方案去处理,第一种是只保留一种重写即可

如下所示就是,我们只保留了C的重写,不会发生冲突,所以就不会报错了

image-20230831172829914

第二种方案就是让D在来一个重写,这样的话, 反正无论B和C是否重写,都要听D的重写函数了。

image-20230831173331125

上面的这些原因其实都是因为只有A有一张虚表才导致的。最终上图中的虚表里面最后就只有D的虚函数了。

当然我们或许会以为B和C的重写就没有意义了。其实不是的,当我们想要一个B或者C类对象的时候,他们的重写就有意义了。

上面其实还是菱形虚拟继承中比较简单的情况,事实上菱形虚拟继承是更加复杂的,当我们在B和C里面又添加了一些虚函数,这些虚函数指针又该放哪里呢?都放A里面的虚表吗?

其实不是的,这里B和C又会各自生成一张虚表,它们自己的虚函数存储在他们自己的虚表里面。因为按照一开始的A的虚表是B和C共享的,如果两个都往A的虚表里面塞,其实不太合适的。

class A
{
public:
	virtual void func1()
	{
		cout << "A::func1()" << endl;
	}
	int _a;
};
class B : virtual public A
{
public:
	virtual void func1()
	{
		cout << "B::func1()" << endl;
	}
	virtual void func2()
	{
		cout << "B::func2()" << endl;
	}
	int _b;
};
class C : virtual public A
{
public:
	virtual void func1()
	{
		cout << "C::func1()" << endl;
	}
	virtual void func2()
	{
		cout << "C::func2()" << endl;
	}
	int _c;
};
class D : public B, public C
{
public:
	virtual void func1()
	{
		cout << "D::func1()" << endl;
	}
	int _d;
};
int main()
{
	D d;
	d.B::_a = 1;
	d.C::_a = 2;
	d._b = 3;
	d._c = 4;
	d._d = 5;
	return 0;
}

image-20230831182010505

如上图所示,是内存窗口的模样,那么我们可以看到B和C里面有两个指针,一个是虚基表指针,一个是虚表指针。那么究竟哪个是虚表指针,哪个是虚基表指针呢?我们可以测试一下

image-20230831183331160

image-20230831184007669

其实单纯,看里面的数据,我们大概可以猜测到,第一个是虚表指针,第二个是虚基表指针

对于虚基表里面的内容, 它里面存储的是偏移量,第一个是-4,第二个是18,可见,第一个指针是为了找到该部分的起始位置,第二个指针是为了找到A的部分

那么如果我们给D有自己单独的虚函数呢?D会额外创建虚表吗?其实不会的,因为D完全可以已经存在的虚表就够了。我们可能会以为放入共享的A的虚表,不过如果按照多继承的角度去理解,也有可能会放入B的虚表。

image-20230831184848308

三、抽象类

1.抽象类的概念

在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承 。

至于为什么起这个抽象的名字,我们可以理解为,这个类在现实世界中没有实体。所以不能实例化出对象。而且由于派生类继承了抽象类,它里面也包含了纯虚函数,那么它自然也不能实例化出对象了。派生类如果真的想要实例化出对象,我们可以使用重写的方式,这样的话,它里面的这个纯虚函数就被覆盖,就没有纯虚函数了,自然就可以实例化出对象了

class Car
{
public:
	virtual void Drive() = 0;
};
class Benz :public Car
{
public:
	virtual void Drive()
	{
		cout << "Benz-舒适" << endl;
	}
};
class BMW :public Car
{
public:
	virtual void Drive()
	{
		cout << "BMW-操控" << endl;
	}
};
void Test()
{
	Car* pBenz = new Benz;
	pBenz->Drive();
	Car* pBMW = new BMW;
	pBMW->Drive();
}
int main()
{
	Test();
	return 0;
}

image-20230901191413113

如下是由于包含纯虚函数导致不能实例化出对象的情形

image-20230901192114050

对于抽象类的多态,我们可能更多是应用于如下场景

image-20230901192312328

那么现在有一个问题,Car类有虚表吗?其实Car类甚至都没有实例化出对象,是根本不可能有虚表的。只有Benz和BMW类才有虚表。

其实纯虚函数的作用就是强制了派生类的重写,因为如果不重写的话,要虚函数其实也没有什么其他用处了。

它与override的区别就是,override则是检查派生类中的虚函数是否完成了重写

两者还是有一些差距的,一个是在基类的,一个是在派生类的。

2.接口继承与实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数 。


总结

本篇文章着重讲解了多继承与菱形继承的虚表,以及抽象类的使用等方法。也正如抽象类的名字一样,本节内容确实比较抽象。愿可以为读者带来帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100357.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

高版本springboot3.1配置Eureka客户端问题

只需要按上面配置好&#xff0c;然后高版本的Eureka&#xff0c;不需要EnableEurekaClient这个注解了&#xff0c;直接SpringBoot启动&#xff0c;就可以注册到注册中心。 /*********************************************************/ /** * 开启eureka客户端功能 */ //E…

说说Flink中的State

分析&回答 基本类型划分 在Flink中&#xff0c;按照基本类型&#xff0c;对State做了以下两类的划分&#xff1a; Keyed State&#xff0c;和Key有关的状态类型&#xff0c;它只能被基于KeyedStream之上的操作&#xff0c;方法所使用。我们可以从逻辑上理解这种状态是一…

如何有效防止服务器被攻击?

随着互联网的快速发展&#xff0c;服务器安全问题日益引起人们的关注。近期&#xff0c;全球范围内频繁发生的服务器攻击事件引发了广泛关注。为了保护企业和个人的数据安全&#xff0c;有效防止服务器被攻击已成为迫在眉睫的任务。 首先&#xff0c;及时更新服务器的操作系统和…

Visual Studio编译出来的程序无法在其它电脑上运行

在其它电脑&#xff08;比如Windows Server 2012&#xff09;上运行Visual Studio编译出来的应用程序&#xff0c;结果报错&#xff1a;“无法启动此程序&#xff0c;因为计算机中丢失VCRUNTIME140.dll。尝试重新安装该程序以解决此问题。” 解决方法&#xff1a; 属性 -> …

Linux线程互斥

目录 一、线程不安全 1.线程不安全现象 2.线程不安全程序的特质 3.线程不安全程序的原因 二、线程互斥 1.基本概念 2.锁 &#xff08;1&#xff09;认识锁 &#xff08;2&#xff09;互斥锁的使用 &#xff08;3&#xff09;代码的改造 3.锁的本质 &#xff08;1&a…

读word模板批量生成制式文件

文章目录 1、Maven依赖2、.docx或.doc格式的word模板准备3、读word模板&#xff0c;批量替换代码域&#xff0c;生成文件&#xff0c;demo4、结果展示 1、Maven依赖 <dependency><groupId>fr.opensagres.xdocreport</groupId><artifactId>fr.opensagre…

企业级智能PDF及文档处理SDK GdPicture.NET 14.2 Crack

企业级智能PDF及文档处理SDK GdPicture.NET 提供了一组非常先进的 API&#xff0c;这些 API 利用了人工智能、机器学习和模糊逻辑算法等尖端技术。经过超过 15 年的持续研究和对创新的专注&#xff0c;我们的 SDK 已成为市场上针对PDF、OCR、条形码、文档成像和各种格式最全面的…

Redis数据结构总结

Redis 是一款开源的&#xff0c;内存中的数据结构存储系统&#xff0c;它可以用作数据库、缓存和消息代理。Redis 支持多种类型的数据结构&#xff0c;如字符串&#xff08;String&#xff09;、哈希&#xff08;Hashes&#xff09;、列表&#xff08;Lists&#xff09;、集合&…

C盘扩容遇到的问题(BitLocker解密、)

120G的C盘不知不觉的就满了&#xff0c;忍了好久终于要动手了。 尽管电脑-管理--磁盘管理里可以进行磁盘大小调整&#xff0c;但由于各盘都在用&#xff0c;不能够连续调整&#xff0c;所以选用DiskGenius。 # DiskGenius调整分区大小遇到“您选择的分区不支持无损调整容量” …

LINQ详解(查询表达式)

什么是LINQ&#xff1f; LINQ(语言集成查询)是将查询功能直接集成到C#中。数据查询表示简单的字符串&#xff0c;在编译时不会进行类型检查和IntelliSense(代码补全辅助工具)支持。 在开发中&#xff0c;通常需要对不同类型的数据源了解不同的查询语句&#xff0c;如SQL数据库…

老师们快看过来,这里有使用ChatGPT当助教的方法

最近OpenAI官方博客发布了一篇文章How teachers are using ChatGPT&#xff08;老师们如何使用ChatGPT&#xff09;&#xff0c;讲的是老师们如何在教学中使用ChatGPT&#xff0c;其中有几个例子挺好的&#xff0c;我转述一下&#xff0c;希望对你有用。 制定教案 第一个例子…

【大数据】Flink 详解(六):源码篇 Ⅰ

Flink 详解&#xff08;六&#xff09;&#xff1a;源码篇 Ⅰ 55、Flink 作业的提交流程&#xff1f;56、Flink 作业提交分为几种方式&#xff1f;57、Flink JobGraph 是在什么时候生成的&#xff1f;58、那在 JobGraph 提交集群之前都经历哪些过程&#xff1f;59、看你提到 Pi…

Android Aidl跨进程通讯(二)--异常捕获处理

学更好的别人&#xff0c; 做更好的自己。 ——《微卡智享》 本文长度为1623字&#xff0c;预计阅读5分钟 前言 上一篇《Android Aidl跨进程通讯的简单使用》中介绍了跨进程的通讯处理&#xff0c;在进程间的数据通过Aidl实现了交互&#xff0c;项目中经常会遇到Bug&#xff0c…

浅谈为什么磁盘慢会导致Linux负载飙升

先说原因结论 在Linux系统上&#xff0c;load average这个指标基本失去了作用&#xff0c;因为你不知道它代表什么意思&#xff0c;当看到load average很高的时候&#xff0c;你不知道是runnable进程太多还是uninterruptible sleep进程太多&#xff0c;也就无法判断是CPU不够用…

乐理-笔记

乐理笔记整理 1、前言2、认识钢琴键盘及音名3、升降号、还原号4、如何区分同一音名的不同键&#xff1f;5、各类音符时值的关系6、歌曲拍号7、拍号的强弱规律8、歌曲速度&#xff08;BPM&#xff09;9、附点音符10、三连音12、唱名与简谱数字13、自然大调&#xff08;白键&…

JavaScript基础04

JavaScript 基础 文章目录 JavaScript 基础函数声明和调用声明&#xff08;定义&#xff09;调用 参数形参和实参 返回值作用域全局作用域局部作用域 匿名函数函数表达式立即执行函数 理解封装的意义&#xff0c;能够通过函数的声明实现逻辑的封装&#xff0c;知道对象数据类型…

QT(9.1)对话框与事件处理

作业&#xff1a; 1. 完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&…

B081-Lucene+ElasticSearch

目录 认识全文检索概念lucene原理全文检索的特点常见的全文检索方案 Lucene创建索引导包分析图代码 搜索索引分析图代码 ElasticSearch认识ElasticSearchES与Kibana的安装及使用说明ES相关概念理解和简单增删改查ES查询DSL查询DSL过滤 分词器IK分词器安装测试分词器 文档映射(字…

大数据组件-Flume集群环境搭建

&#x1f947;&#x1f947;【大数据学习记录篇】-持续更新中~&#x1f947;&#x1f947; 个人主页&#xff1a;beixi 本文章收录于专栏&#xff08;点击传送&#xff09;&#xff1a;【大数据学习】 &#x1f493;&#x1f493;持续更新中&#xff0c;感谢各位前辈朋友们支持…

sentinel熔断报java.lang.reflect.UndeclaredThrowableException

背景&#xff1a;内部要进行应用jdk&springboot升级&#xff0c;因此也需要将Spring Cloud Hystrix 替换成alibaba sentinel。 依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</a…