【C++】C++11新特性 lambda表达式

C++11新特性

  • lambda表达式
    • 1、引入
    • 2、lambda表达式语法
    • 3、 捕获列表说明
    • 4、 lambda表达式的原理
    • 5、 lambda对象的大小

lambda表达式

1、引入

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法,如果待排序元素为自定义类型,需要用户定义排序时的比较规则:

struct Goods
{
	string _name; // 名字
	double _price; // 价格
	int _evaluate; // 评价
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};

struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};

struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), ComparePriceLess());
	sort(v.begin(), v.end(), ComparePriceGreater());
}

随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一个算法,都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,这些都给编程者带来了极大的不便。因此,在C++11语法中出现了lambda表达式。

2、lambda表达式语法

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement}

  1. lambda表达式各部分说明
    [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。

  2. (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略。

  3. mutable:默认情况下,lambda函数的捕捉列表总是一个const变量,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。

  4. ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。

  5. {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

  • 注意
    在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。

所以对于上面的问题我们可以这样写:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	
	sort(v.begin(), v.end(), 
		[](const Goods& g1, const Goods& g2) { return g1._price < g2._price; });
	sort(v.begin(), v.end(),
		[](const Goods& g1, const Goods& g2) { return g1._price > g2._price; });
}

这样写,我们没有必要再为函数或函数对象起名而烦恼,而且也不用当我们看不太懂其中的含义时去跳转到函数定义去看函数是如何实现的,上面我们一眼就能看出比较的方式是什么,也没有必要去写多个仿函数。

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。

int main()
{
	int x = 0, y = 1;
	auto add = [](int x, int y)->int {return x + y; };
	cout << add(x, y) << endl;
	return 0;
}

3、 捕获列表说明

捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

  • [var]:表示值传递方式捕捉变量var
  • [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
  • [&var]:表示引用传递捕捉变量var
  • [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
  • [this]:表示值传递方式捕捉当前的this指针

注意:

  1. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
    比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量,[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量

  2. 捕捉列表不允许变量重复传递,否则就会导致编译错误。
    比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复

  3. lambda函数能捕捉最外域(非全局域)的所有变量。

  4. lambda函数捕捉列表不能捕捉全局变量和静态变量

  5. lambda表达式之间不能相互赋值,即使看起来类型相同。

// 函数指针
void (*PF)();

int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };
	// 此处先不解释原因,等lambda表达式底层实现原理看完后就知道了
	//f1 = f2; // 编译失败--->提示找不到operator=()
	 
	
	// 允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();
	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();
	return 0;
}

捕捉列表的使用

int main()
{
	// 最简单的lambda表达式, 该lambda表达式没有任何意义
	[] {};

	// 省略参数列表和返回值类型,返回值类型由编译器推导为int
	int a = 3, b = 4;
	[=] {return a + 3; };

	// 省略了返回值类型,无返回值类型
	auto fun1 = [&](int c) {b = a + c; };
	fun1(10);
	cout << a << " " << b << endl;

	// 各部分都很完善的lambda函数
	auto fun2 = [=, &b](int c)->int {return b += a + c; };
	cout << fun2(10) << endl;

	// 复制捕捉x
	int x = 10;
	auto add_x = [x](int a) mutable { x *= 2; return a + x; };
	cout << add_x(10) << endl;
	return 0;
}

在这里插入图片描述

4、 lambda表达式的原理

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	// 计算利息
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};

int main()
{
	double rate = 0.49;
	// 函数对象
	Rate r1(rate);
	r1(10000, 2);

	// lambda表达式
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;};
	r2(10000, 2);
	return 0;
}

从使用方式上来看,函数对象与lambda表达式完全一样:

  • 函数对象将rate作为其成员变量,在定义对象时给出初始值即可。
  • lambda表达式通过捕获列表可以直接将该变量捕获。

其实底层中,lambda对象就是一个函数对象,只不过lambda的函数在底层都是一个叫 lambda_uuid 的类。

uuid是用唯一识别码,它根据某种算法能在一个系统内生成不同的字符串,保证字符串不重复,于是我们的lambda_uuid的类就不会同名,我们也不用担心命名问题。

将上述代码转换为汇编代码:

在这里插入图片描述

所以实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()

5、 lambda对象的大小

所以上述的lambda表达式的大小是多少呢?

答案是:和捕捉列表中的对象的实际使用情况有关,因为lambda表达式在底层是被编译器看成仿函数的,所以捕捉列表中的对象那个实际被使用了,在仿函数内部就创建了那个对象同类型的类内成员。

// 仿函数
class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	// 计算利息
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};

int main()
{
	// 多增加的变量,让捕捉列表有更多的变量可以捕捉
	int tmp = 10;
	// 利率
	double rate = 0.49;
	
	// 函数对象
	Rate r1(rate);
	r1(10000, 2);

	// lambda表达式捕捉全部变量: tmp, rate(真实被使用的), r1
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;};
	r2(10000, 2);

	// lambda表达式不捕捉
	auto r3 = [](double monty, int year)->double {return monty * year;};
	
	// 分别求大小
	cout << sizeof(r1) << endl;
	cout << sizeof(r2) << endl;
	cout << sizeof(r3) << endl;
	return 0;
}

在这里插入图片描述

  • r1函数对象是8,因为内部有一个double类型的变量。
  • r2函数对象是8,因为内部有一个double类型的变量,多余的其它变量没有使用,所以在底层看r2的结构与r1相同,只是类名不同罢了。
  • r3函数对象是1,其没有捕捉对象,所以其内部没有成员变量,只有operator()运算符重载,而在C++中空类对象的大小为1,所以r1的大小为1。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/99072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BookStack开源免费知识库docker-compose部署

BookStack&#xff08;书栈&#xff09;是一个功能强大且易于使用的开源知识管理平台&#xff0c;适用于个人、团队或企业的文档协作和知识共享。 一、BookStack特点 简单易用&#xff1a;BookStack提供了一个直观的用户界面&#xff0c;使用户能够轻松创建、编辑和组织文档多…

8. 损失函数与反向传播

8.1 损失函数 ① Loss损失函数一方面计算实际输出和目标之间的差距。 ② Loss损失函数另一方面为我们更新输出提供一定的依据。 8.2 L1loss损失函数 ① L1loss数学公式如下图所示&#xff0c;例子如下下图所示。 import torch from torch.nn import L1Loss inputs torch.tens…

visual studio编写DLL,python调用

选择第一个c DLL&#xff0c; 然后项目源文件下右击新建项&#xff0c;这里名字随便取&#xff0c;在代码中输入一下内容&#xff1a; #include <iostream>#define EXPORT extern "C" __declspec(dllexport)EXPORT int sub(int a, int b) {return a - b; } 在…

【GO】LGTM_Grafana_Tempo(1)_架构

最近在尝试用 LGTM 来实现 Go 微服务的可观测性&#xff0c;就顺便整理一下文档。 Tempo 会分为 4 篇文章&#xff1a; Tempo 的架构官网测试实操跑通gin 框架发送 trace 数据到 tempogo-zero 微服务框架使用发送数据到 tempo 第一篇是关于&#xff0c;tempo 的架构&#xff…

R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享...

全文链接&#xff1a;https://tecdat.cn/?p33514 综合社会调查&#xff08;GSS&#xff09;是由国家舆论研究中心开展的一项观察性研究。自 1972 年以来&#xff0c;GSS 一直通过收集当代社会的数据来监测社会学和态度趋势。其目的是解释态度、行为和属性的趋势和常量。从 197…

Docsify + Gitalk详细配置过程讲解

&#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是Zeeland&#xff0c;开源建设者与全栈领域优质创作者。&#x1f4dd; CSDN主页&#xff1a;Zeeland&#x1f525;&#x1f4e3; 我的博客&#xff1a;Zeeland&#x1f4da; Github主页: Undertone0809 (Zeeland)&…

前端:html实现页面切换、顶部标签栏(可删、可切换,点击左侧超链接出现标签栏)

一、在一个页面&#xff08;不跨页面&#xff09; 效果&#xff1a; 代码 <!DOCTYPE html> <html><head><style>/* 设置标签页外层容器样式 */.tab-container {width: 100%;background-color: #f1f1f1;overflow: hidden;}/* 设置标签页选项卡的样式 …

Linux socket网络编程实战(tcp)实现双方聊天

在上节已经系统介绍了大致的流程和相关的API&#xff0c;这节就开始写代码&#xff01; 回顾上节的流程&#xff1a; 创建一个NET文件夹 来存放网络编程相关的代码&#xff1a; tcp服务端代码初步实现--上 这部分先实现服务器的连接部分的代码并进行验证 server1.c&#xff…

如何在小红书进行学习直播

诸神缄默不语-个人CSDN博文目录 因为我是从B站开始的&#xff0c;所以一些直播常识型的东西请见我之前写的如何在B站进行学习直播这一篇。 本篇主要介绍一些小红书之与B站不同之处。 小红书在手机端是可以直接点击“”选择直播的。 文章目录 1. 电脑直播-小红书直播软件2. 电…

二叉树题目:二叉树的右视图

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;二叉树的右视图 出处&#xff1a;199. 二叉树的右视图 难度 4 级 题目描述 要求 给定二叉树的根结点 root \t…

DHCP中继实验

文章目录 一、实验背景与目的二、实验拓扑三、实验需求四、实验解法1. 配置IP地址2.配置R1为DHCP服务器&#xff0c;能够跨网段为192.168.2.0/24网段自动分配IP地址3. 在PC3上Ping 192.168.1.1&#xff0c;确认可以Ping通 摘要&#xff1a; 本实验旨在通过配置DHCP中继实现跨网…

C++项目:网络版本在线五子棋对战

目录 1.项目介绍 2.开发环境 3.核心技术 4. 环境搭建 5.websocketpp 5.1原理解析 5.2报文格式 5.3websocketpp常用接口介绍 5.4websocket服务器 6.JsonCpp使用 6.1Json数据格式 6.2JsonCpp介绍 7.MySQL API 7.1MySQL API介绍 7.2MySQL API使用 7.3实现增删改查…

降噪音频转录 Krisp: v1.40.7 Crack

主打人工智能降噪服务的初创公司「Krisp」近期宣布推出音频转录功能&#xff0c;能对电话和视频会议进行实时设备转录。该软件还整合的ChatGPT&#xff0c;以便快速总结内容&#xff0c;开放测试版于今天上线。 随着线上会议越来越频繁&#xff0c;会议转录已成为团队工作的重…

微服务系统面经之二: 以秒杀系统为例

16 微服务与集群部署 16.1 一个微服务一般会采用集群部署吗&#xff1f; 对于一个微服务是否采用集群部署&#xff0c;这完全取决于具体的业务需求和系统规模。如果一个微服务的访问压力较大&#xff0c;或者需要提供高可用性&#xff0c;那么采用集群部署是一种常见的策略。…

C语言之函数题

目录 1.乘法口诀表 2.交换两个整数 3.函数判断闰年 4.函数判断素数 5.计算斐波那契数 6.递归实现n的k次方 7.计算一个数的每位之和&#xff08;递归&#xff09; 8.字符串逆序&#xff08;递归实现&#xff09; 9.strlen的模拟&#xff08;递归实现&#xff09; 10.求…

NoSQL MongoDB Redis E-R图 UML类图概述

NoSQL NoSQL(Not only SQL)是对不同于传统的关系数据库的数据库管理系统的统称&#xff0c;即广义地来说可以把所有不是关系型数据库的数据库统称为NoSQL。 NoSQL 数据库专门构建用于特定的数据模型&#xff0c;并且具有灵活的架构来构建现代应用程序。NoSQL 数据库使用各种数…

这是一条求助贴(postman测试的时候一直是404)

看到这个问题是404的时候总感觉不该求助大家&#xff0c;404多常见一看就是简单的路径问题&#xff0c;我的好像不是&#xff0c;我把我的问题奉上。 首先我先给出我的url http://10.3.22.195:8080/escloud/rest/escloud_contentws/permissionStatistics/jc-haojl/sz 这是我…

抖音电商,提前批offer!

南京夫子庙茶颜悦色店 摄于2023.8.27 小伙伴们大家好&#xff0c;我是阿秀。 互联网圈有个梗就是"两大码农工厂&#xff1a;南华科、北北邮"&#xff0c;就是说这两所高校的毕业生从事互联网工作的特别多&#xff0c;北邮虽然是211&#xff0c;但在互联网圈子里比很多…

Qt5升级到Qt6分步迁移教程

Qt框架的一个新的长期支持版本6.5最近发布。它为以前的版本引入了许多修复、改进和新功能。有些可能对您的应用程序有用&#xff08;如果不是现在&#xff0c;可能会在将来&#xff09;&#xff0c;因此最好将应用程序迁移到最新版本的框架。 仍然有许多应用程序仍在使用Qt 5&…

瑞芯微:基于RK3568得人脸朝向检测

驾驶员监控系统是基于驾驶员面部图像处理来研究驾驶员状态的实时系统。首先挖掘出人在疲劳状态下的表情特征&#xff0c;然后将这些定性的表情特征进行量化&#xff0c;提取出面部特征点及特征指标作为判断依据&#xff0c;再结合实验数据总结出基于这些参数的识别方法&#xf…