时序预测 | MATLAB实现基于PSO-GRU、GRU时间序列预测对比

时序预测 | MATLAB实现基于PSO-GRU、GRU时间序列预测对比

目录

    • 时序预测 | MATLAB实现基于PSO-GRU、GRU时间序列预测对比
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

MATLAB实现基于PSO-GRU、GRU时间序列预测对比。
1.MATLAB实现基于PSO-GRU、GRU时间序列预测对比;
2.输入数据为单变量时间序列数据,即一维数据;
3.运行环境Matlab2020及以上,依次运行Main1GRUTS、Main2PSOGRUTS、Main3CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;

GRU(门控循环单元)与粒子群算法优化后的GRU(PSOGRU)对比实验,可用于风电、光伏等负荷预测,时序预测,数据为单输入单输出,PSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。

4.命令窗口输出MAE、MAPE、RMSE和R2;

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现基于PSO-GRU、GRU时间序列预测对比
Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) 设定适应度函数
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);  %设定边界以及优化函数

N=20;
M=1000;
[xm1,trace1]=pso(N,M,dim,lb,ub,fobj);
[xm2,trace2]=qpso(N,M,dim,lb,ub,fobj);

figure('Position',[269   240   660   290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
plot(trace1,'Color','b','linewidth',1.5)
hold on
plot(trace2,'Color','r','linewidth',1.5)
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('PSO','QPSO')

%% 取对数 更方便看
figure
plot(log10(trace1),'linewidth',1.5)
hold on
plot(log10(trace2),'linewidth',1.5)
legend('PSO','QPSO')
title('PSO VS QPSO')
xlabel('iteration/M')
ylabel('fitness value(log10)')
function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2' 
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F5' 
        x=-200:2:200; y=x; %[-5,5]
    case 'F6' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F7' 
        x=-1:0.03:1;  y=x  %[-1,1]
    case 'F8' 
        x=-500:10:500;y=x; %[-500,500]
    case 'F9' 
        x=-5:0.1:5;   y=x; %[-5,5]    
    case 'F10' 
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11' 
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12' 
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13' 
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14' 
        x=-100:2:100; y=x;%[-100,100]
    case 'F15' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16' 
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18' 
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20' 
        x=-5:0.1:5; y=x;%[-5,5]        
    case 'F21' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22' 
        x=-5:0.1:5; y=x;%[-5,5]     
    case 'F23' 
        x=-5:0.1:5; y=x;%[-5,5]  
end    

    

L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end       
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end          
    end
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/98698.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为云 sfs 服务浅谈

以root用户登录弹性云服务器。 以root用户登录弹性云服务器。 安装NFS客户端。 查看系统是否安装NFS软件包。 CentOS、Red Hat、Oracle Enterprise Linux、SUSE、Euler OS、Fedora或OpenSUSE系统下,执行如下命令: rpm -qa|grep nfs Debian或Ubuntu系统下…

ssm+vue高校实验室管理系统源码和论文

ssmvue高校实验室管理系统源码和论文081 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 一.毕业设计的内容 本高校实验室管理系统采用Java语言、MySQL数据库,基于SSM框架进行开发设计&…

Spring Boot存在路径遍历漏洞CVE-2021-22118

文章目录 0.前言1.参考文档2.基础介绍1. 影响的版本2. **漏洞利用原理:** 3.解决方案3.1. 方案13.2. 方案23. 方案3 0.前言 背景:Spring Boot存在路径遍历漏洞。CVE-2021-22118: 官方 issue也有对此的记录,感兴趣可以看下 https://github.com…

雅思写作 三小时浓缩学习顾家北 笔记总结(二)

目录 饥饿网一百句翻译 Using government funds for pollution cleanup work can create a comfortable environment. "Allocating government funds to pollution cleanup work can contribute to the creation of a comfortable environment." Some advertise…

掌握逻辑漏洞复现技术,保护您的数字环境

环境准备 这篇文章旨在用于网络安全学习,请勿进行任何非法行为,否则后果自负。 1、支付逻辑漏洞 攻击相关介绍 介绍: 支付逻辑漏洞是指攻击者利用支付系统的漏洞,突破系统的限制,完成非法的支付操作。攻击者可以采…

Room的基本使用

参考:jetpack之Room数据库 目录 引言一、基本使用1. 导入相关引用2. 建表Entity3. 数据库操作类Dao4. 数据库RoomDatabase5. 简单使用 二、ViewModel LiveData Room 的结合开发1. 建表Entity2. 数据库操作类Dao3. 数据库RoomDatabase4. 仓库Repository5. ViewMode…

uniapp微信小程序用户隐私保护

使用wx.requirePrivacyAuthorize实现微信小程序用户隐私保护。 一、前言 微信小程序官方出了一个公告《关于小程序隐私保护指引设置的公告》。不整的话,后果很多授权无法使用,详见《小程序用户隐私保护指引内容介绍》 。 二、隐私相关设置 1、在 微信…

STM32的HAL库的定时器使用

用HAL库老是忘记了定时器中断怎么配置,该调用哪个回调函数。今天记录一下,下次再忘了就来翻一下。 系统的时钟配置,定时器的时钟是84MHz 这里定时器时钟是84M,分频是8400后,时基就是1/10000s,即0.1ms。Per…

CXL 内存交织(Memory Interleaving)

🔥点击查看精选 CXL 系列文章🔥 🔥点击进入【芯片设计验证】社区,查看更多精彩内容🔥 📢 声明: 🥭 作者主页:【MangoPapa的CSDN主页】。⚠️ 本文首发于CSDN&#xff0c…

学习pytorch8 土堆说卷积操作

土堆说卷积操作 官网debug torch版本只有nn 没有nn.functional代码执行结果 B站小土堆视频学习笔记 官网 https://pytorch.org/docs/stable/nn.html#convolution-layers 常用torch.nn, nn是对nn.functional的封装,使函数更易用。 卷积核从输入图像左上角&#xf…

构建简单的Node.js HTTP服务器,发布公网远程访问的快速方法

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…

线性代数的学习和整理16:什么是各种空间(类型),向量空间,距离(类型)?

目录 1 空间相关的群,环,域,集合,空间的预备知识 1.1:群,环,域,集合,空间的定义(表示不懂,只是做个标记) 2 空间 2.1 各种空间概念…

MySQL学习-day1

2023.8.26 今天是8月26号,正式开始学习MySQL,看的是尚硅谷的MySQL教程,每天记录一下自己的学习笔记,以供复盘。 数据库的常见概念 1、DB:数据库,存储数据的容器。 2、DBMS:数据…

JS数组原理探究!

JavaScript 数组的 API 经常会被 JS 开发者频繁使用,在整个 JavaScript 的学习过程中尤为重要。 数组作为一个最基础的一维数据结构,在各种编程语言中都充当着至关重要的角色,你很难想象没有数组的编程语言会是什么模样。特别是 JavaScript&…

04ShardingSphere-JDBC垂直分片

1、准备服务器 比如商城项目中,有用户、订单等系统,数据库在设计时用户信息与订单信息在同一表中。这里创建用户服务、订单服务实现数据库的用户信息和订单信息垂直分片 服务器规划:使用docker方式创建如下容器 服务器:容器名se…

Flink的checkpoint是怎么实现的?

分析&回答 Checkpoint介绍 Checkpoint容错机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保证应用流图状态的一致性。Flink的Checkpoint机制原理来自“Chandy-Lamport alg…

四川玖璨电子商务有限公司:如何给短视频做运营

短视频已经成为了人们日常生活中的娱乐方式之一。随着短视频平台的兴起,越来越多的人开始尝试在短视频上进行运营,而给短视频配上适合的音乐则是其中一项重要的工作。在本文中,我们将探讨如何给短视频做运营,特别是如何给短视频配…

非常详细的 Ceph 介绍、原理、架构

非常详细的 Ceph 介绍、原理、架构 1. Ceph架构简介及使用场景介绍 1.1 Ceph简介 Ceph是一个统一的分布式存储系统,设计初衷是提供较好的性能、可靠性和可扩展性。 Ceph项目最早起源于Sage就读博士期间的工作(最早的成果于2004年发表)&#…

第九章 动态规划part12(代码随想录)

309.最佳买卖股票时机含冷冻期 1. 确定dp数组(dp table)以及下标的含义 dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。 2. 确定递推公式 拆分卖出股票状态是因为冷冻期前一天一定是具体卖出股票状态。 状态一 dp[i][0]&…

CUBLAS库入门教程(从环境配置讲起)

文章目录 前言一、搭建环境二、简单介绍三、 具体例子四、疑问 前言 CUBLAS库是NVIDIA CUDA用于线性代数计算的库。使用CUBLAS库的原因是我不想去直接写核函数。 (当然,你还是得学习核函数该怎么写。但是人家写好的肯定比我自己写的更准确!&…