OSPF:虚链路

一、虚链路概念

在OSPF中,虚链路(Virtual Link) 是一种逻辑连接,用于解决因网络设计或扩展导致的区域无法直接连接到骨干区域(Area 0)的问题。它是通过中间区域(Transit Area)在两个ABR(Area Border Router)之间建立的逻辑通道,确保OSPF的骨干区域(Area 0)的连续性。

1. 虚链路的用途

  • 修复骨干区域的断裂:当某个非骨干区域(如Area 1)未物理连接到Area 0时,通过虚链路将该区域逻辑连接到Area 0。

  • 临时网络扩展:在网络结构调整期间,作为过渡方案,避免物理拓扑的频繁改动。

  • 多区域互连:通过中间区域连接多个非骨干区域(需符合OSPF分层设计原则)。


2. 虚链路的工作原理

  1. 逻辑通道:虚链路不依赖物理链路,而是通过中间区域的ABR之间的OSPF邻接关系建立逻辑连接。

  2. 配置对象:在两个ABR之间配置虚链路,中间区域必须是一个标准区域(不能是Stub或NSSA区域)。

  3. 路由传播:通过虚链路连接的ABR会像普通ABR一样,传递Type 3 LSA(汇总路由)。

3. 虚链路的注意事项

  1. 中间区域限制

    • 中间区域必须是标准区域(非Stub、非NSSA)。

    • 中间区域需有完整的OSPF路由信息。

  2. 临时性方案:虚链路应作为过渡方案,长期依赖可能导致网络复杂性和不稳定性。

  3. 路由器ID依赖:虚链路配置依赖路由器的Router ID,需确保Router ID稳定(建议手动配置)。

  4. 安全性:虚链路可能引入安全隐患,需配合认证机制(如OSPF MD5认证)。

 

4. 虚链路的优缺点

优点缺点
解决骨干区域断裂问题增加网络复杂性
无需物理链路调整依赖中间区域的稳定性
支持临时网络扩展需求可能导致路由计算效率降低

5.应用场景

场景1:修复断裂的骨干区域
  • 问题:新增区域Area 3未连接到Area 0。

  • 解决:通过中间区域Area 2建立虚链路,将Area 3逻辑连接到Area 0。

场景2:合并多区域网络
  • 问题:两个独立的OSPF域需合并,但物理连接无法直达Area 0。

  • 解决:通过虚链路跨中间区域实现逻辑连接。

二、虚链路配置

拓扑:

IP及OSPF配置

[R1]int g0/0/0
[R1-GigabitEthernet0/0/0]ip add 12.1.1.1 24
[R1]int LoopBack 0
[R1-LoopBack0]ip add 1.1.1.1 32
[R1]ospf router-id 1.1.1.1
[R1-ospf-1]area 0
[R1-ospf-1-area-0.0.0.0]network 12.1.1.0 0.0.0.255
[R1-ospf-1-area-0.0.0.0]network 1.1.1.1 0.0.0.0

[R2]int g0/0/1
[R2-GigabitEthernet0/0/1]ip add 12.1.1.2 24
[R2]int g0/0/0
[R2-GigabitEthernet0/0/0]ip add 23.1.1.2 24
[R2]int LoopBack 0
[R2-LoopBack0]ip add 2.2.2.2 32
[R2]ospf router-id 2.2.2.2
[R2-ospf-1]area 0
[R2-ospf-1-area-0.0.0.0]network 12.1.1.0 0.0.0.255
[R2-ospf-1]area 1
[R2-ospf-1-area-0.0.0.1]network 23.1.1.0 0.0.0.255
[R2-ospf-1-area-0.0.0.1]network 2.2.2.2 0.0.0.0

[R3]int g0/0/1
[R3-GigabitEthernet0/0/1]ip add 23.1.1.3 24
[R3]int g0/0/0
[R3-GigabitEthernet0/0/0]ip add 34.1.1.3 24
[R3]int LoopBack 0
[R3-LoopBack0]ip add 3.3.3.3 32
[R3]ospf router-id 3.3.3.3
[R3-ospf-1]area 1
[R3-ospf-1-area-0.0.0.1]network 23.1.1.0 0.0.0.255
[R3-ospf-1-area-0.0.0.1]network 34.1.1.0 0.0.0.255
[R3-ospf-1-area-0.0.0.1]network 3.3.3.3 0.0.0.0

[R4]int g0/0/1
[R4-GigabitEthernet0/0/1]ip add 34.1.1.4 24
[R4]int g0/0/0
[R4-GigabitEthernet0/0/0]ip add 45.1.1.4 24
[R4]int LoopBack 0
[R4-LoopBack0]ip add 4.4.4.4 32
[R4]ospf router-id 4.4.4.4
[R4-ospf-1]area 1
[R4-ospf-1-area-0.0.0.1]network 34.1.1.0 0.0.0.255
[R4-ospf-1-area-0.0.0.1]network 4.4.4.4 0.0.0.0
[R4-ospf-1]area 2
[R4-ospf-1-area-0.0.0.2]network 45.1.1.0 0.0.0.255

[R5]int g0/0/1
[R5-GigabitEthernet0/0/1]ip add 45.1.1.5 24   
[R5]int LoopBack 0
[R5-LoopBack0]ip add 5.5.5.5 32
[R5]ospf router-id 5.5.5.5
[R5-ospf-1]area 2
[R5-ospf-1-area-0.0.0.2]network 45.1.1.0 0.0.0.255
[R5-ospf-1-area-0.0.0.2]network 5.5.5.5 0.0.0.0

在R1上查看OSPF路由表

可以看到R1上没有R5的路由,所以R1没有学习到R5的路由

去R5上面查看OSPF路由表

可以看到R5学习不到域间的路由

开始配置虚链路,在R2和R4之间建立虚链路

[R2]ospf
[R2-ospf-1]area 1
[R2-ospf-1-area-0.0.0.1]vlink-peer 4.4.4.4

[R4]ospf
[R4-ospf-1]area 1
[R4-ospf-1-area-0.0.0.1]vlink-peer 2.2.2.2

接下来去R5上查看路由表

可以看到R5学习到域间的路由了

三、总结

虚链路是OSPF中用于逻辑修复骨干区域断裂的灵活工具,但其本质是临时解决方案。在实际网络中,应优先优化物理拓扑,避免过度依赖虚链路。配置时需确保中间区域的稳定性,并配合认证和监控机制,以维持网络的高效与安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/984287.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

openharmory-鸿蒙生态设备之间文件互传发现、接入认证和文件传输

软件版本 OpenHarmony系统版本基线:基于 OpenHarmony-v5.0.0-Release。 图库应用版本:基于OpenHarmony-v5.0.0-Release。 文件管理器应用版本:基于OpenHarmony-v5.0.0-Release。 7 用户历程图 8 设备发现 8.1 设备交互流程图 8.2 设备发…

Linux系统编程--线程同步

目录 一、前言 二、线程饥饿 三、线程同步 四、条件变量 1、cond 2、条件变量的使用 五、条件变量与互斥锁 一、前言 上篇文章我们讲解了线程互斥的概念,为了防止多个线程同时访问一份临界资源而出问题,我们引入了线程互斥,线程互斥其实…

【HarmonyOS Next】鸿蒙加固方案调研和分析

【HarmonyOS Next】鸿蒙加固方案调研和分析 一、前言 根据鸿蒙应用的上架流程,本地构建app文件后,上架到AGC平台,平台会进行解析。根据鸿蒙系统的特殊设置,仿照IOS的生态闭环方案。只能从AGC应用市场下载app进行安装。这样的流程…

# 深入理解RNN(一):循环神经网络的核心计算机制

深入理解RNN:循环神经网络的核心计算机制 RNN示意图 引言 在自然语言处理、时间序列预测、语音识别等涉及序列数据的领域,循环神经网络(RNN)一直扮演着核心角色。尽管近年来Transformer等架构逐渐成为主流,RNN的基本原理和思想依然对于理…

深度学习实战车道线检测

深度学习实战车道线检测 这里写目录标题 车道线原理整体架构设计核心原理步骤1. 特征提取(骨干网络)2. 特征融合3. 车道线表示与分类4. 损失函数5. 后处理 速度优势的来源 软件实现安装环境与文件说明实验测试 结束语 车道线原理 Lane - Detection是一种…

【redis】五种数据类型和编码方式

文章目录 五种数据类型编码方式stringhashlistsetzset查询内部编码 五种数据类型 字符串:Java 中的 String哈希:Java 中的 HashMap列表:Java 中的 List集合:Java 中的 Set有序集合:除了存 member 之外,还有…

Next.js Server Action 提交 vs 前端 Fetch 提交:核心区别与优劣分析

在使用 Next.js 开发时,开发者经常会面临一个问题:前端的数据提交应该直接 Fetch 调用 API 还是使用 Next.js 提供的 Server Action 提交? 本文将深度解析: ✅ Server Action 提交数据的工作原理✅ 前端 Fetch 提交数据的优缺点…

DeepSeek开启AI办公新模式,WPS/Office集成DeepSeek-R1本地大模型!

从央视到地方媒体,已有多家媒体机构推出AI主播,最近杭州文化广播电视集团的《杭州新闻联播》节目,使用AI主持人进行新闻播报,且做到了0失误率,可见AI正在逐渐取代部分行业和一些重复性的工作,这一现象引发很…

混合存储HDD+SSD机型磁盘阵列,配上SSD缓存功能,性能提升300%

企业日常运行各种文件无处不在,文档、报告、视频、应用数据......面对成千上万的文件,团队之间需要做到无障碍协作,员工能够即时快速访问、共享处理文件。随着业务增长,数字化办公不仅需要大容量,快速高效的文件访问越…

【AI】什么是Embedding向量模型?我们应该如何选择?

我们之前讲的搭建本地知识库,基本都是使用检索增强生成(RAG)技术来搭建,Embedding模型则是RAG的核心,同时也是大模型落地必不可少的技术。那么今天我们就来聊聊Embedding向量模型: 一、Embedding模型是什么? Embedding模型是一种将离散数据(如文本、图像、用户行为等)…

Java在小米SU7 Ultra汽车中的技术赋能

目录 一、智能驾驶“大脑”与实时数据 场景一:海量数据的分布式计算 场景二:实时决策的毫秒级响应 场景三:弹性扩展与容错机制 技术隐喻: 二、车载信息系统(IVI)的交互 场景一:Android Automo…

【Python 数据结构 8.串】

目录 一、串的基本概念 1.串的概念 2.获取串的长度 3.串的拷贝 4.串的比较 5.串的拼接 6.串的索引 二、Python中串的使用 1.串的定义 2.串的拼接 3.获取串的长度 4.获取子串位置 5.获取字符串的索引 6.字符串的切片 7.字符串反转 8.字符串的比较 9.字符串的赋值 三、实战 1.344…

计算机视觉cv2入门之图像的读取,显示,与保存

在计算机视觉领域,Python的cv2库是一个不可或缺的工具,它提供了丰富的图像处理功能。作为OpenCV的Python接口,cv2使得图像处理的实现变得简单而高效。 示例图片 目录 opencv获取方式 图像基本知识 颜色空间 RGB HSV 图像格式 BMP格式 …

LLM 学习(二 完结 Multi-Head Attention、Encoder、Decoder)

文章目录 LLM 学习(二 完结 Multi-Head Attention、Encoder、Decoder)Self-Attention (自注意力机制)结构多头注意力 EncoderAdd & Norm 层Feed Forward 层 EncoderDecoder的第一个Multi-Head AttentionMasked 操作Teacher Fo…

006-获取硬件序列号

获取硬件序列号 我将从跨平台角度系统讲解如何通过C获取硬件序列号的核心技术&#xff0c;并提供可移植性代码实现。 一、处理器序列号获取 Windows平台 #include <windows.h> #include <intrin.h>std::string GetCPUSerial_Win() {DWORD cpuInfo[2] { 0 };__c…

GDB调试技巧:多线程案例分析(保姆级)

在软件开发的复杂世界里&#xff0c;高效的调试工具是解决问题的关键利器。今天&#xff0c;我们将深入探讨强大的调试工具 ——GDB&#xff08;GNU Debugger&#xff09;。GDB 为开发者提供了一种深入程序内部运行机制、查找错误和优化性能的有效途径。让我们一同开启 GDB 的调…

OSPF的各种LSA类型,多区域及特殊区域

一、OSPF的LSA类型 OSPF&#xff08;开放最短路径优先&#xff09;协议使用多种LSA&#xff08;链路状态通告&#xff09;类型来交换网络拓扑信息。以下是主要LSA类型的详细分类及其作用&#xff1a; 1. Type 1 LSA&#xff08;路由器LSA Router LSA&#xff09; 生成者&…

JavaScript系列06-深入理解 JavaScript 事件系统:从原生事件到 React 合成事件

JavaScript 事件系统是构建交互式 Web 应用的核心。本文从原生 DOM 事件到 React 的合成事件&#xff0c;内容涵盖&#xff1a; JavaScript 事件基础&#xff1a;事件类型、事件注册、事件对象事件传播机制&#xff1a;捕获、目标和冒泡阶段高级事件技术&#xff1a;事件委托、…

字节跳动C++客户端开发实习生内推-抖音基础技术

智能手机爱好者和使用者&#xff0c;追求良好的用户体验&#xff1b; 具有良好的编程习惯&#xff0c;代码结构清晰&#xff0c;命名规范&#xff1b; 熟练掌握数据结构与算法、计算机网络、操作系统、编译原理等课程&#xff1b; 熟练掌握C/C/OC/Swift一种或多种语言&#xff…

MySQL进阶-关联查询优化

采用左外连接 下面开始 EXPLAIN 分析 EXPLAIN SELECT SQL_NO_CACHE * FROM type LEFT JOIN book ON type.card book.card; 结论&#xff1a;type 有All ,代表着全表扫描&#xff0c;效率较差 添加索引优化 ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】&#xff0…