Python----数据可视化(Seaborn二:绘图一)

常见方法

  • barplot方法 单独绘制条形图

  • catplot方法 可以条形图、散点图、盒图、小提亲图、等

  • countplot方法 统计数量

一、柱状图

seaborn.barplot(data=None,  x=None, y=None, hue=None, color=None, palette=None)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
color用于变量的不同级别的颜色。应该 可以是可以解释的 ,或者是 字典将色调级别映射到 matplotlib 颜色。
palette用于绘制填充颜色的原始饱和度的比例。大 面片通常使用不饱和的颜色看起来更好,但如果您希望颜色与输入值完美匹配,请将其设置为。1

1.1、常规柱状图

import seaborn as sns
import pandas as pd
# 示例数据
tips=pd.read_csv('tips.csv')
# 单变量柱状图
sns.barplot(x="day", y="total_bill", data=tips)
# 显示图表
plt.show()

1.2、横向条形图

import seaborn as sns
import pandas as pd
# 示例数据
tips=pd.read_csv('tips.csv')
# 单变量柱状图
sns.barplot(x="total_bill", y="day", data=tips)
# 显示图表
plt.show()

1.3、分组条图

import seaborn as sns
import pandas as pd
# 示例数据
tips=pd.read_csv('tips.csv')
import seaborn as sns
# 分组柱状图
sns.barplot(x="day", y="total_bill", hue="sex", data=tips)
# 显示图表
plt.show()

1.4、设置颜色

import seaborn as sns
# 示例数据
tips=pd.read_csv('tips.csv')
# 设置颜色
sns.barplot(x="day", y="total_bill", data=tips,color='salmon')
sns.barplot(x="day", y="total_bill", hue="sex", data=tips,palette='dark:salmon')
# 显示图表
plt.show()

1.5、 统计数量

seaborn.countplot(data=None, *, x=None, y=None, hue=None, color=None, palette=None)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
color用于变量的不同级别的颜色。应该 可以是可以解释的 ,或者是 字典将色调级别映射到 matplotlib 颜色。
palette用于绘制填充颜色的原始饱和度的比例。大 面片通常使用不饱和的颜色看起来更好,但如果您希望颜色与输入值完美匹配,请将其设置为。1
import seaborn as sns 
import matplotlib.pyplot as plt 
import pandas as pd 


tips = pd.read_csv('tips.csv')  

# 通过按天数对数据进行分组并计数
# display(tips.groupby('day').count())  

# 使用ountplot 方法绘制当天小费数量的条形图  
sns.countplot(x="day", data=tips)  

# 显示绘制的图形  
plt.show()

二、直方图

方法

  • histplot方法 绘制单变量或双变量直方图来显示数据集的分布

  • displot方法 绘制直方图、核密度图。可以比较多个变量分布情况

seaborn.histplot(data=None,x=None, y=None, hue=None, bins='auto',multiple='layer', element='bars',  kde=False, palette=None,color=None)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
color用于变量的不同级别的颜色。应该 可以是可以解释的 ,或者是 字典将色调级别映射到 matplotlib 颜色。
palette用于绘制填充颜色的原始饱和度的比例。大 面片通常使用不饱和的颜色看起来更好,但如果您希望颜色与输入值完美匹配,请将其设置为。1
bins通用 bin 参数,可以是引用规则的名称, 分箱数或分箱的分隔线。
multiple

语义映射创建子集时解析多个元素的方法。 仅与单变量数据相关。

{“layer”, “减淡”, “stack”, “fill”}

elment

直方图统计量的可视化表示形式。 仅与单变量数据相关。

{“bars”, “step”, “poly”}

seaborn.displot(data=None, *, x=None, y=None, hue=None, row=None, col=None, weights=None, kind='hist', rug=False, rug_kws=None, log_scale=None, legend=True, palette=None, hue_order=None, hue_norm=None, color=None, col_wrap=None, row_order=None, col_order=None, height=5, aspect=1, facet_kws=None, **kwargs)
row定义子集以在不同 facet 上绘制的变量。
col定义子集以在不同 facet 上绘制的变量。

2.1、常规直方图

sns.histplot(tips['total_bill'])

 

sns.displot(tips['total_bill'])

2.2、核密度估计

        核密度估计的作用是用来估计概率密度函数的,它可以用来描述随机变量的密度分布

sns.histplot(tips['total_bill'],kde=True)
sns.displot(tips['total_bill'], kde=True)

 

2.3、多变量直方图

multiple='layer' # 默认值,以层叠的形式展示
multiple='dodge' # 以并列的形式展示
multiple='stack' # 以堆叠的形式展示
multiple='fill' # 以百分比堆叠的形式展示
sns.histplot(x='total_bill', hue='sex', data=tips)

 

sns.histplot(x='total_bill', hue='sex', data=tips, multiple='stack')

 

sns.histplot(x='total_bill', hue='sex', data=tips, multiple='dodge')

 

sns.histplot(x='total_bill', hue='sex', data=tips, multiple='fill')

 

2.4、修改一些参数

sns.histplot(x='total_bill', data=tips, bins=20, color='skyblue', edgecolor='black', linewidth=1.2)
sns.displot(x='total_bill', data=tips, bins=20, color='skyblue', edgecolor='black', linewidth=1.2)

 

2.5、 累积直方图

sns.histplot(x='total_bill', data=tips, element='step')
sns.displot(x='total_bill', data=tips, element='step',col='time')

 

三、折线图

方法

  • lineplot方法 单独绘制折线图

  • relplot方法 绘制折线图、散点图

seaborn.lineplot(data=None, x=None, y=None, hue=None)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
seaborn.relplot(data=None, *, x=None, y=None, hue=None, row=None, col=None kind='scatter')
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
row定义子集以在不同 facet 上绘制的变量。
col定义子集以在不同 facet 上绘制的变量。
kind要绘制的情节类型,对应于 seaborn 关系情节。 选项包括 或 。"scatter""line"
sns.lineplot(x=[1,2,3,4,5],y=[1,2,3,4,5])
sns.relplot(x=[1,2,3,4,5],y=[1,2,3,4,5],kind='line')

import seaborn as sns
# 示例数据
tips = pd.read_csv('tips.csv')  


sns.lineplot(x="day", y="total_bill", data=tips)
sns.relplot(x="day", y="total_bill", data=tips, kind='line')


# 多变量折线图
sns.lineplot(x="day", y="total_bill", data=tips,hue='time')
sns.relplot(x="day", y="total_bill", data=tips,hue='time',kind='line')


# 使用relplot绘制折线图
sns.relplot(x="day", y="total_bill", data=tips,
      kind='line',# 图像类型
      hue='sex',# 分类变量
      col='time') # 分图变量

 

四、散点图

方法

  • scatterplot方法 主要用于绘制两个数值变量之间的散点图

  • relplot方法 可以绘制多种类型的关系图,包括散点图

seaborn.scatterplot(data=None, x=None, y=None, hue=None)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
seaborn.relplot(data=None, *, x=None, y=None, hue=None, row=None, col=None kind='scatter')
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
row定义子集以在不同 facet 上绘制的变量。
col定义子集以在不同 facet 上绘制的变量。
kind要绘制的情节类型,对应于 seaborn 关系情节。 选项包括 或 。"scatter""line"
import seaborn as sns


# 加载数据
tips=pd.read_csv('tips.csv')
# 常规散点图
sns.scatterplot(data=tips,x='total_bill', y='tip')
sns.relplot( data=tips, x='total_bill', y='tip',kind='scatter')
# 多组散点图
sns.scatterplot(data=tips,x='total_bill', y='tip', hue='smoker')
sns.relplot(data=tips,x='total_bill', y='tip', hue='smoker')
# 多变量散点图
sns.relplot(data=tips,x='total_bill', y='tip', hue='smoker',col='time')

 

五、分散散点图

方法

  • stripplot方法 利用抖动功能绘制分类散点图,以减少过度绘图

  • swarmplot方法 绘制分类散点图,并将点调整为不重叠

  • catplot方法 可以绘制以上2种图,并且可以分图

seaborn.stripplot(data=None, *, x=None, y=None, hue=None,dodge=False)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
dodge当一个变量被赋值时,将其设置为 will 沿分类分隔不同色相级别的条带 轴并缩小分配给每个条带的空间量。否则 每个级别的点将绘制在同一条带中。
seaborn.swarmplot(data=None, *, x=None, y=None, hue=None,dodge=False)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
dodge当一个变量被赋值时,将其设置为 will 沿分类分隔不同色相级别的条带 轴并缩小分配给每个条带的空间量。否则 每个级别的点将绘制在同一条带中。
seaborn.catplot(data=None, *, x=None, y=None, hue=None, row=None, col=None, kind='strip')
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
row定义子集以在不同 facet 上绘制的变量。
col定义子集以在不同 facet 上绘制的变量。
kind要绘制的绘图类型对应于分类的名称 轴级绘图功能。选项有: “strip”, “swarm”, “box”, “violin”, “boxen”、“point”、“bar” 或 “count”。
import seaborn as sns
import pandas as pd


tips=pd.read_csv('tips.csv')

sns.catplot(y="total_bill", x="day", data=tips,hue='sex',dodge=True,marker="D",col='smoker')

sns.swarmplot(y="total_bill", x="day", data=tips,hue='sex',marker="v")

 

sns.catplot(y="total_bill", x="day", data=tips,hue='sex',marker="v",col='smoker',kind='swarm')

六、盒图

方法

  • boxplot方法

  • catplot方法

seaborn.boxplot(data=None, *, x=None, y=None, hue=None,fill=True,width=0.8, gap=0,notch=False)
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
fill定义子集以在不同 facet 上绘制的变量。
gap箱体间隔
width箱体宽度
notch箱体是否缺口
seaborn.catplot(data=None, *, x=None, y=None, hue=None, row=None, col=None, kind='strip')
函数描述
data用于绘图的数据集。
x用于绘制长格式数据的输入。
y用于绘制长格式数据的输入。
hue用于绘制长格式数据的输入。对原有的属性进行更加细致的分组
row定义子集以在不同 facet 上绘制的变量。
col定义子集以在不同 facet 上绘制的变量。
kind要绘制的绘图类型对应于分类的名称 轴级绘图功能。选项有: “strip”, “swarm”, “box”, “violin”, “boxen”、“point”、“bar” 或 “count”。
import seaborn as sns
import pandas as pd


tips = pd.read_csv('tips.csv')


sns.boxplot(x="day", y="total_bill", data=tips,hue="smoker",
      fill=False, # 填充箱体,默认为True
      gap=0.1,  # 箱体间隔
      width=0.5, # 箱体宽度
      notch=True # 箱体是否缺口
       )

sns.catplot(x="day", y="total_bill", data=tips,kind="box",col="sex")

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/983929.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

只音 1.2.0 |纯净无广告,畅听全网音乐,支持无损下载和批量下载

只音是一款全网音乐一网打尽的听歌利器,无需登录即可搜索抖音、网易云、QQ音乐等平台资源,无损音质直连播放。内置智能推荐算法,每日更新热门榜单与个性化歌单,轻松发现小众优质音乐。支持批量下载功能,一次性打包30首…

Python从入门到精通1:FastAPI

引言 在现代 Web 开发中,API 是前后端分离架构的核心。FastAPI 凭借其高性能、简洁的语法和自动文档生成功能,成为 Python 开发者的首选框架。本文将从零开始,详细讲解 FastAPI 的核心概念、安装配置、路由设计、请求处理以及实际应用案例&a…

Service与Ingress:如何将你的应用暴露给世界

引言:从“内部通讯”到“对外开放” 想象Kubernetes集群是一座繁忙的办公楼,每个Pod(容器)是楼内的员工。 Service 就像前台的接待员,负责将外部电话(请求)转接到正确的员工(Pod&am…

【Linux学习篇】--开发工具第一期

目录 1. Linux编辑器的使用--vim使用 1.1 vim的基本概念 1.2 vim基本操作 1.3 vim正常模式(指令模式)命令集 1.4 vim末行模式命令集 1.5 vim配置 2. Linux编译器-gcc/g使用 2.1 背景知识 2.2 gcc如何完成 2.3 gcc选择项 1. Linux编…

Elastic:AI 会开始取代网络安全工作吗?

作者:来自 Elastic Joe DeFever 不会,但它正在从根本上改变这些工作。 生成式 AI (GenAI) 正迅速成为日常安全工作流程中的一个重要组成部分。那么,它是合作伙伴还是竞争对手? GenAI 技术在安全堆栈几乎每个方面的广泛应用&#…

Windows 11 IoT 企业版 LTSC 2025 特制适度 22635.5025

文件: Windows 11 IoT 企业版 LTSC 2025 特制适度 22635.5025 install.esd 大小: 2.57G(2768694310 字节) 修改时间: 2025年3月9日, 星期日, 11 : 40 : 15 MD5: BFCB23BC2F78CA9243FFA68D5DDDDFC1 SHA1: C4D8BBF8B8D8E0E8E49DE5E9CC8D7F77385A745A CRC32…

Lab18_ SQL injection with filter bypass via XML encoding

文章目录 前言:进入实验室构造 payload 前言: 实验室标题为: 通关 XML 编码绕过过滤器的 SQL 注入 简介: 此实验室的库存检查功能中存在 SQL 注入漏洞。查询结果在应用程序的响应中返回,因此您可以使用 UNION 攻击…

kali虚拟机登录页面发癫 大写锁定输入不了密码

不知道怎么了 总是发癫 重启切换太麻烦了 还有时候不成功 kali其实可以开启虚拟键盘 如下 就解决的 发癫kali 发癫 发癫

【汇编语言】单片机程序执行过程

一、任务需求 指示灯LED4闪烁,亮0.5秒,灭0.5秒,无限循环 二、针对硬件的编程 1、确定原理图2、确定硬件的物理关系 三、设计步骤 1.用自己的语言描述工作流程 1.1指示灯LED4亮1.2延时0.5秒1.3指示灯LED4灭1.4延时0.5秒1.5跳转到1.1步 …

【Linux篇】调试器-gdb/cgdb使用

📌 个人主页: 孙同学_ 🔧 文章专栏:Liunx 💡 关注我,分享经验,助你少走弯路! 文章目录 1. 前言2.关于gdb2.1 快速认识gdb2.2 安装cgdb2.3 gdb命令2.4 调试 & 断点 3.常见技巧3.…

ThinkPhp 5 安装阿里云内容安全(绿化)

composer require alibabacloud/green-20220302 首先要把php5(不支持php7)的执行文件设置到PATH环境变量 此外还要先执行composer update php5.5和php5.6的区别 5.5认为 <? 开头的也是php文件&#xff0c;包括 <?php 5.6认为 <? 开头的不是php文件&#xff0c;只…

Level DB --- 写流程计算

写流程架构Level DB --- 写流程架构-CSDN博客已经介绍&#xff0c;写流程计算包括写日志&#xff0c;和将kv插入到memtable中。 写日志和写memtable 用户端插入的kv数据&#xff0c;既要写日志同时也要写memtable。写日志是指kv记录要同步到日志文件中&#xff1b;写memtable…

JavaWeb-servlet6中过滤器和监听器

Servlet 过滤器 Servlet 过滤器&#xff08;Filter&#xff09;与 Servlet 十分相似&#xff0c;但 Filter 具有拦截客户端请求的功能&#xff0c; Filter 可以改变请求中的内容&#xff0c;以便满足实际开发中的需要。对于程序开发人员而言&#xff0c; Filter 实质上就是 We…

SQL PLUS与Oracle数据库的交互

一、SQL Plus与数据库的交互 可以 使用2种基本类型的命令与数据库进行交互&#xff1a; 服务器执行的命令&#xff1a;SQLQ命令&#xff08;以&#xff1b;结束&#xff09;和PL/SQL程序块&#xff08;以/结束&#xff09; 本地命令&#xff1a;SQL Plus命令 二、设置SQL Pl…

Git系列之git tag和ReleaseMilestone

以下是关于 Git Tag、Release 和 Milestone 的深度融合内容&#xff0c;并补充了关于 Git Tag 的所有命令、详细解释和指令实例&#xff0c;条理清晰&#xff0c;结合实际使用场景和案例。 1. Git Tag 1.1 定义 • Tag 是 Git 中用于标记特定提交&#xff08;commit&#xf…

WinForm模态与非模态窗体

1、模态窗体 1&#xff09;定义&#xff1a; 模态窗体是指当窗体显示时&#xff0c;用户必须先关闭该窗体&#xff0c;才能继续与应用程序的其他部分进行交互。 2&#xff09;特点&#xff1a; 窗体以模态方式显示时&#xff0c;会阻塞主窗体的操作。用户必须处理完模态窗体上…

关闭Windows安全中心,解析与实操指南

在这个数字化时代&#xff0c;Windows操作系统作为我们日常工作和娱乐的基石&#xff0c;其内置的Windows安全中心&#xff08;Windows Defender Security Center&#xff09;在保护系统安全方面扮演着重要角色。然而&#xff0c;对于某些高级用户或特定需求场景&#xff0c;关…

【 <一> 炼丹初探:JavaWeb 的起源与基础】之 JSP 标签库:自定义标签的开发与应用

<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、JSP 标签…

IDEA与Maven使用-学习记录(持续补充...)

1. 下载与安装 以ideaIU-2021.3.1为例&#xff0c;安装步骤&#xff1a; 以管理员身份启动ideaIU-2021.3.1修改安装路径为&#xff1a;D:\Program Files\JetBrains\IntelliJ IDEA 2021.3.1勾选【创建桌面快捷方式】&#xff08;可选&#xff09;、【打开文件夹作为项目】&…

JS中的闭包(closures)一种强大但易混淆的概念

JavaScript 中的闭包&#xff08;closures&#xff09;被认为是一种既强大又易混淆的概念。闭包允许函数访问其外部作用域的变量&#xff0c;即使外部函数已执行完毕&#xff0c;这在状态维护和回调函数中非常有用。但其复杂性可能导致开发者的误解&#xff0c;尤其在变量捕获和…