简单的二元语言模型bigram实现

  • 内容总结归纳自视频:【珍藏】从头开始用代码构建GPT - 大神Andrej Karpathy 的“神经网络从Zero到Hero 系列”之七_哔哩哔哩_bilibili 
  • 项目:https://github.com/karpathy/ng-video-lecture

Bigram模型是基于当前Token预测下一个Token的模型。例如,如果输入序列是`[A, B, C]`,那么模型会根据`A`预测`B`,根据`B`预测`C`,依此类推,实现自回归生成。在生成新Token时,通常只需要最后一个Token的信息,因为每个预测仅依赖于当前Token。

1. 训练batch数据形式

训练数据是:

 训练目标是:

2. 定义词嵌入层

nn.Embedding 层输出的是可学习的浮点数,将token索引 (B,T) 直接映射为logits,即输入(4,8),输出 (4,8,65),其中输入每个数字,被映射成logit向量(这些值通过 F.cross_entropy 内部自动进行 softmax 转换为概率分布),比如上面输入tokens有个24被映射成如下。

logits = [1.0, 0.5, -2.0, ..., 3.2]  # 共65个浮点数

softmax后得到。

probs = [0.15, 0.12, 0.01, ..., 0.20]  # 和为1的概率分布

这样输出的是每个位置的概率分布。

交叉熵函数会自动计算每个位置的概率分布与真实标签之间的损失,并取平均。

简单的大语言模型,基于Bigram的结构,即每个token仅根据前一个token来预测下一个token。具体实现如下。

from torch.nn import functional as F  # 导入PyTorch函数模块
torch.manual_seed(1337)  # 固定随机种子保证结果可复现

class BigramLanguageModel(nn.Module):  # 定义Bigram语言模型类

    def __init__(self, vocab_size):
        super().__init__()  # 继承父类初始化方法
        # 定义词嵌入层:将token索引直接映射为logits
        # 输入输出维度均为vocab_size(词汇表大小)
        self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

    def forward(self, idx, targets):
        # 前向传播函数
        # idx: inputs, 输入序列 (B, T),B=批次数,T=序列长度
        # targets: 目标序列 (B, T)
        
        # (4,8) -> (4,8,65)
        logits = self.token_embedding_table(idx)  # (B, T, C)
        # 通过嵌入层获得每个位置的概率分布,C=词汇表大小
        
        # (4*8,C), (4*8,) -> (1,)
        B, T, C = logits.shape  # 解包维度:批次数、序列长度、词表大小
        logits = logits.view(B*T, C)  # 展平为二维张量 (B*T, C)
        targets = targets.view(B*T)    # 目标展平为一维张量 (B*T)
        loss = F.cross_entropy(logits, targets)  # 计算交叉熵损失
        
        return logits, loss  # 返回logits(未归一化概率)和损失值

# 假设 vocab_size=65(例如52字母+标点)
vocab_size = 65
m = BigramLanguageModel(vocab_size)  # 实例化模型

# 假设输入数据(代码中未定义):
# xb: 输入批次 (B=4, T=8),例如 tensor([[1,2,3,...], ...])
# yb: 目标批次 (B=4, T=8)
logits, loss = m(xb, yb)  # 执行前向传播

print(logits.shape)  # 输出logits形状:torch.Size([32, 65])
# 解释:32 = B*T = 4*8,65=词表大小(每个位置65种可能)

print(loss)  # 输出损失值:tensor(4.8786, grad_fn=<NllLossBackward>)
# 解释:初始随机参数下,损失值约为-ln(1/65)=4.17,实际值因参数初始化略有波动

3. 代码逻辑分步解释

# 假设输入和目标的形状均为 (B=4, T=8)
# 输入示例(第一个样本):
inputs[0] = [24, 43, 58, 5, 57, 1, 46, 43]
targets[0] = [43, 58, 5, 57, 1, 46, 43, 39]

3.1 Softmax后的概率分布意义 

当模型处理输入序列时,每个位置会输出一个长度为vocab_size的logits向量。即

输入: (4,8);

输出:(4,8,65). 65维度向量是每个输入token的下一个token的概率分布。

例如,当输入序列为 [24, 43, 58, 5, 57, 1, 46, 43] 时:
- 在第1个位置(token=24),模型预测下一个token(对应target=43)的概率分布p[0].shape=(65,),下一个输出是43的概率为p[0][target[0]]=p[0][43];
- 在第2个位置(token=43),模型预测下一个token(对应target=58)的概率分布p[1].shape=(65),下一个输出是58的概率为p[1][target[1]]=p[1][58];
- 以此类推,每个位置的logits经过softmax后得到一个概率分布,即每个输入位置,都会预测下一个token概率分布
具体来说:
   logits.shape = (4, 8, 65) → softmax后形状不变->p.shape=(4,8,65),但每行的65个值变为概率(和为1)
这些概率表示模型认为「当前token的下一个token」是词汇表中各token的可能性。

3.2 交叉熵计算步骤

假设logits初始形状为 (4, 8, 65)
B, T, C = logits.shape  # B=4, T=8, C=65

# 展平logits和targets:
logits_flat = logits.view(B*T, C)  # 形状 (32, 65)
targets_flat = targets.view(B*T)    # 形状 (32,)

# 交叉熵计算(PyTorch内部过程):
# 对logits_flat的每一行(共32行)做softmax,得到概率分布probs (32, 65)
# 对每个样本i,取probs[i][targets_flat[i]],即真实标签对应的预测概率(此概率是下一个token是targets_flat[i]的概率
# 计算负对数损失:loss = -mean(log(probs[i][targets_flat[i]]))(pytorch实现是将targets_flat所谓索引
loss = F.cross_entropy(logits_flat, targets_flat)  # 输出标量值

3.3 示例计算

# 以第一个样本的第一个位置为例:
# 输入token=24,目标token=43
# 模型输出的logits[0,0]是一个65维向量(这里logits.shape=[4,8,65]),例如:
logits_example = logits[0,0]  # 形状 (65,)
probs_example = F.softmax(logits_example, dim=-1)  # 形状 (65,)
# 假设probs_example[43] = 0.15(模型预测下一个token=43的概率为15%)
# 则此位置的损失为 -log(0.15) ≈ 1.897 (注意-log(p)是一个x范围在[0,1]之间单调递减函数)

# 最终损失是所有32个位置类似计算的均值。
# 初始损失约为4.87(接近均匀分布的理论值 -ln(1/65)≈4.17)

4. 测试生成文本

# super simple bigram model
class BigramLanguageModel(nn.Module):

    def __init__(self, vocab_size):
        super().__init__()
        # each token directly reads off the logits for the next token from a lookup table
        self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

    def forward(self, idx, targets=None):
        # idx and targets are both (B,T) tensor of integers
        logits = self.token_embedding_table(idx) # (B,T,C)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C)
            targets = targets.view(B*T)
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # get the predictions
            logits, loss = self(idx) # 没有输入target时,返回的logits未被展平。  
            # focus only on the last time step
            logits = logits[:, -1, :] # (B,T,C) -> (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1) # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
        return idx

以下是Bigram模型生成过程的逐步详解,以输入序列[24, 43, 58, 5, 57, 1, 46, 43]为例,说明模型如何从初始输入[24]开始逐步预测下一个词: 

4.1 初始输入:[24]

  • 输入形状idx = [[24]]B=1批次,T=1序列长度)。

  • 前向传播

    • 通过嵌入层,模型输出logits形状为(1, 1, 65),表示对当前词24的下一个词的预测分数。

    • 假设logits[0, 0, 43] = 5.0(词43的logit较高),其他位置logits较低(如logits[0, 0, :] = [..., 5.0, ...])。

  • 概率分布

    • 对logits应用softmax,得到概率分布probs。例如:

      probs = [0.01, ..., 0.8(对应43), 0.01, ...]  # 总和为1
  • 采样

    • 根据probs,使用torch.multinomial采样,选中词43的概率最大。

  • 更新输入

    • 43拼接到序列末尾,新输入为idx = [[24, 43]](形状(1, 2))。


4.2 输入:[24, 43]

  • 前向传播

    • 模型处理整个序列,输出logits形状为(1, 2, 65),对应两个位置的预测:

      • 第1个位置(词24)预测下一个词(已生成43)。

      • 第2个位置(词43)预测下一个词。

    • 提取最后一个位置的logits:logits[:, -1, :](形状(1, 65))。

    • 假设logits[0, -1, 58] = 6.0(词58的logit较高)。

  • 概率分布

    • probs = [0.01, ..., 0.85(对应58), 0.01, ...]

  • 采样

    • 选中词58

  • 更新输入

    • 新输入为idx = [[24, 43, 58]](形状(1, 3))。


4.3 输入:[24, 43, 58]

  • 前向传播

    • logits形状为(1, 3, 65)

    • 提取最后一个位置(词58)的logits,假设logits[0, -1, 5] = 4.5

  • 概率分布

    • probs = [0.01, ..., 0.7(对应5), ...]

  • 采样

    • 选中词5

  • 更新输入

    • 新输入为idx = [[24, 43, 58, 5]](形状(1, 4))。


4.4 重复生成直到序列完成

  • 后续步骤

    • 输入[24, 43, 58, 5] → 预测词57

    • 输入[24, 43, 58, 5, 57] → 预测词1

    • 输入[24, 43, 58, 5, 57, 1] → 预测词46

    • 输入[24, 43, 58, 5, 57, 1, 46] → 预测词43

  • 最终序列

    • idx = [[24, 43, 58, 5, 57, 1, 46, 43]]

注意:上面输入序列是越来越长的,为何说预测下一个词只跟上一个词有关?如果只跟一个词有关,为何不每次只输入一个词,然后预测下一个词?

虽然理论上可以仅传递最后一个词,但实际实现中传递完整序列的原因(视频作者说的,固定generate函数形式,我这里理解的是代码简洁):

  • 代码简洁性:无需在每次生成时截取最后一个词,直接复用统一的前向传播逻辑;

实验验证

若修改代码,每次仅传递最后一个词:

def generate(self, idx, max_new_tokens):
    for _ in range(max_new_tokens):
        last_token = idx[:, -1:]          # 仅取最后一个词 (B, 1)
        logits, _ = self(last_token)       # 输出形状 (B, 1, C)
        probs = F.softmax(logits[:, -1, :], dim=-1)
        idx_next = torch.multinomial(probs, num_samples=1)
        idx = torch.cat((idx, idx_next), dim=1)
    return idx

4.5 完整代码

import torch
import torch.nn as nn
from torch.nn import functional as F

# hyperparameters
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 8 # what is the maximum context length for predictions?
max_iters = 3000
eval_interval = 300
learning_rate = 1e-2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
# ------------

torch.manual_seed(1337)

# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
    text = f.read()

# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]

# data loading
def get_batch(split):
    # generate a small batch of data of inputs x and targets y
    data = train_data if split == 'train' else val_data
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([data[i:i+block_size] for i in ix])
    y = torch.stack([data[i+1:i+block_size+1] for i in ix])
    x, y = x.to(device), y.to(device)
    return x, y

@torch.no_grad()
def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out

# super simple bigram model
class BigramLanguageModel(nn.Module):

    def __init__(self, vocab_size):
        super().__init__()
        # each token directly reads off the logits for the next token from a lookup table
        self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)

    def forward(self, idx, targets=None):

        # idx and targets are both (B,T) tensor of integers
        logits = self.token_embedding_table(idx) # (B,T,C)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C)
            targets = targets.view(B*T)
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # get the predictions
            logits, loss = self(idx)
            # focus only on the last time step
            logits = logits[:, -1, :] # becomes (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1) # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
        return idx

model = BigramLanguageModel(vocab_size)
m = model.to(device)

# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

for iter in range(max_iters):

    # every once in a while evaluate the loss on train and val sets
    if iter % eval_interval == 0:
        losses = estimate_loss()
        print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

    # sample a batch of data
    xb, yb = get_batch('train')

    # evaluate the loss
    logits, loss = model(xb, yb)
    optimizer.zero_grad(set_to_none=True)
    loss.backward()
    optimizer.step()

# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/983832.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用Deepseek写一个五子棋微信小程序

在当今快节奏的生活中&#xff0c;休闲小游戏成为了许多人放松心情的好选择。五子棋作为一款经典的策略游戏&#xff0c;不仅规则简单&#xff0c;还能锻炼思维。最近&#xff0c;我借助 DeepSeek 的帮助&#xff0c;开发了一款五子棋微信小程序。在这篇文章中&#xff0c;我将…

【Raspberry Pi 5 测评】无显示器上手指南

【Raspberry Pi 5 测评】无显示器上手指南 一、硬件开箱二、系统安装2.1 安装 Raspberry Pi Imager2.2 安装 Rasberry Pi OS 三、系统登录3.1 ping测试3.2 SSH登录 四、远程桌面4.1 启用VNC服务4.2 使用VNC客户端 五、软件安装5.1 替换软件源5.2 安装常用软件 六、参考链接 摘要…

图像标注与OCR工具分析

图像标注和OCR&#xff08;光学字符识别&#xff09;工具的代码进行详细分析。该工具允许用户在图像上进行矩形标注&#xff0c;使用 OCR 对标注区域进行文本识别&#xff0c;并将结果保存为 Excel 文件。同时&#xff0c;用户可以保存和加载标注&#xff0c;清除标注&#xff…

使用Node.js从零搭建DeepSeek本地部署(Express框架、Ollama)

目录 1.安装Node.js和npm2.初始化项目3.安装Ollama4.下载DeepSeek模型5.创建Node.js服务器6.运行服务器7.Web UI对话-Chrome插件-Page Assist 1.安装Node.js和npm 首先确保我们机器上已经安装了Node.js和npm。如果未安装&#xff0c;可以通过以下链接下载并安装适合我们操作系…

基于粒子群算法的配电网重构

一、配电网重构原理 定义&#xff1a; 配电网重构是指在满足运行约束的前提下&#xff0c;通过改变开关状态优化配电网性能&#xff0c;提高系统的经济效益和运行效率。 拓扑约束&#xff1a; 配电网必须保持径向拓扑&#xff0c;避免环网或孤岛。采用算法控制开关状态的选择&…

下载Hugging Face模型的几种方式

1.网页下载 直接访问Hugging Face模型页面&#xff0c;点击“File and versions”选项卡&#xff0c;选择所需的文件进行下载。 2.使用huggingface-cli 首先&#xff0c;安装huggingface_hub: pip install huggingface_hub 然后&#xff0c;使用以下命令下载模型&#xff1…

【Dubbo+Zookeeper】——SpringBoot+Dubbo+Zookeeper知识整合

&#x1f3bc;个人主页&#xff1a;【Y小夜】 &#x1f60e;作者简介&#xff1a;一位双非学校的大二学生&#xff0c;编程爱好者&#xff0c; 专注于基础和实战分享&#xff0c;欢迎私信咨询&#xff01; &#x1f386;入门专栏&#xff1a;&#x1f387;【MySQL&#xff0…

DeepSeek R1 学习笔记

DeepSeek为了方便大众的使用&#xff0c;同时提供了6个蒸馏版本 DeekSeek使用方式 1.大众方式&#xff1a; 网页版&#xff1a;DeepSeek App版&#xff1a;手机各大应用商店下载安装DeepSeek-AI智能对话助手 2.专业用户 开发者&#xff1a;调用API DeepSeek服务器 网址&a…

《从零构建企业级容器镜像生态:Harbor与Registry双星架构实战手记》

目录 一、企业级镜像中枢&#xff1a;Harbor架构深度解析 1.Harbor介绍 环境准备 2. Harbor战略部署 下载安装Harbor 关键配置文件 报错一 添加本地解析 登录测试Harbor 报错二 登录成功 测试 成功显示 二、轻量化镜像驿站&#xff1a;Registry闪电战部署 简单介…

FPGA之USB通信实战:基于FX2芯片的Slave FIFO回环测试详解

FPGA之Usb数据传输 Usb 通信 你也许会有疑问&#xff0c;明明有这么多通信方式和数据传输&#xff08;SPI、I2C、UART、以太网&#xff09;为什么偏偏使用USB呢? 原因有很多&#xff0c;如下&#xff1a; 1. 高速数据传输能力 高带宽&#xff1a;USB接口提供了较高的数据传…

mysql中in和exists的区别?

大家好&#xff0c;我是锋哥。今天分享关于【mysql中in和exists的区别?】面试题。希望对大家有帮助&#xff1b; mysql中in和exists的区别? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 MySQL 中&#xff0c;IN 和 EXISTS 都用于进行子查询&#xff0c;但它…

Unity摄像机跟随物体

功能描述 实现摄像机跟随物体&#xff0c;并使物体始终保持在画面中心位置。 实现步骤 创建脚本&#xff1a;在Unity中创建一个新的C#脚本&#xff0c;命名为CameraFollow。 代码如下&#xff1a; using UnityEngine;public class CameraFollow : MonoBehaviour {public Tran…

springcloud sentinel教程

‌QPS&#xff08;Queries Per Second&#xff09;即每秒查询率 TPS&#xff0c;每秒处理的事务数目 PV&#xff08;page view&#xff09;即页面浏览量 UV 访问数&#xff08;Unique Visitor&#xff09;指独立访客访问数 一、初识Sentinel 什么是雪崩问题? 微服务之间相…

【Tools】Windows下Git 2.48安装教程详解

00. 目录 文章目录 00. 目录01. Git简介02. Git参考资料03. Git安装04. Git测试05. 附录 01. Git简介 Git(读音为/gɪt/。)是一个开源的分布式版本控制系统&#xff0c;可以有效、高速的处理从很小到非常大的项目版本管理。 [1] Git 是 Linus Torvalds 为了帮助管理 Linux 内核…

【Linux系统编程】初识系统编程

目录 一、什么是系统编程1. 系统编程的定义2. 系统编程的特点3. 系统编程的应用领域4. 系统编程的核心概念5. 系统编程的工具和技术 二、操作系统四大基本功能1. 进程管理&#xff08;Process Management&#xff09;2. 内存管理&#xff08;Memory Management&#xff09;3. 文…

神经网络|(十四)|霍普菲尔德神经网络-Hebbian训练

【1】引言 前序学习进程中&#xff0c;除了对基本的神经网络知识进行了学习&#xff0c;还掌握了SOM神经网络原理&#xff0c;文章链接包括且不限于&#xff1a; 神经网络|(十一)|神经元和神经网络-CSDN博客 神经网络|(十二)|常见激活函数-CSDN博客 神经网络|(十三)|SOM神经…

Hive八股

Hive八股 说一下GC模型遇到过gc调优吗yarn有哪些了解讲讲hqI转化为MR源码hbase读写流程hive数据倾斜page cache和buffer的区别和相同近来你关注了大数据生态哪些领域的发展&#xff0c;比如新的feature&#xff0c;新的领域等 Hive1Hive1hive简介2hive架构3hive与Hadoop的关系4…

Docker 部署 Graylog 日志管理系统

Docker 部署 Graylog 日志管理系统 前言一、准备工作二、Docker Compose 配置三、启动 Graylog 服务四、访问 Graylog Web 界面总结 前言 Graylog 是一个开源的日志管理平台&#xff0c;专为实时日志收集、分析和可视化设计。它支持强大的搜索功能&#xff0c;并且与 Elastics…

im即时聊天客服系统SaaS还是私有化部署:成本、安全与定制化的权衡策略

随着即时通讯技术的不断发展&#xff0c;IM即时聊天客服系统已经成为企业与客户沟通、解决问题、提升用户体验的重要工具。在选择IM即时聊天客服系统时&#xff0c;企业面临一个重要决策&#xff1a;选择SaaS&#xff08;软件即服务&#xff09;解决方案&#xff0c;还是进行私…

MySQL(单表)知识点

文章目录 1.数据库的概念2.下载并配置MySQL2.1初始化MySQL的数据2.2注册MYSQL服务2.3启动MYSQL服务2.4修改账户默认密码2.5登录MYSQL2.6卸载MYSQL 3.MYSQL数据模型3.1连接数据库 4.SQL简介4.1SQL的通用语法4.2SQL语句的分类4.3DDL语句4.3.1数据库4.3.2表(创建,查询,修改,删除)4…