2025最新Transformer模型及深度学习前沿技术应用

第一章、注意力(Attention)机制

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。

2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)

3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力

4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)

5、注意力机制的可解释性与可视化技术:注意力权重的可视化(权重热图)

6、案例演示     

7、实操练习

第二章、自然语言处理(NLP)领域的Transformer模型

1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景及其在自然语言处理和计算视觉中的重要性)

2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)

3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)

4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)

5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)

6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、Zero-shot Learning、上下文学习、RLHF人类反馈强化学习、多模态架构)

7、案例演示       

8、实操练习

第三章、计算视觉(CV)领域的Transformer模型

1、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)

2、Swin Transformer模型(提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)

3、DETR模型(提出的背景、基本架构、与RCNN、YOLO系列模型的比较、双向匹配损失与匈牙利匹配算法、匹配损失与框架损失、模型的训练与优化、模型的Python代码实现)

4、案例演示       

5、实操练习

第四章、时间序列建模与预测的大语言模型

1、时间序列建模的大语言模型技术细节(基于Transformer的时间序列预测原理、自注意力机制、编码器-解码器结构、位置编码)

2、时间序列建模的大语言模型训练

3、Time-LLM模型详解(拓扑结构简介、重新编程时间序列输入、Prompt-as-Prefix (PaP)等)

4、基于TimeGPT的时间序列预测(TimeGPT工作原理详解、TimeGPT库的安装与使用)

5、案例演示与实操练习

第五章、目标检测算法

1、目标检测任务与图像分类识别任务的区别与联系。

2、两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。

3、一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。

4、案例演示          

5、实操练习

第六章、目标检测的大语言模型

1、基于大语言模型的目标检测的工作原理(输入图像的特征提取、文本嵌入的生成、视觉和语言特征的融合、目标检测与输出)

2、目标检测领域的大语言模型概述(Pix2Seq、Grounding DINO、Lenna等)

3、案例演示与实操练习

第七章、语义分割的大语言模型

1、基于大语言模型的语义分割的工作原理(图像特征提取、文本嵌入生成、跨模态融合、分割预测)

2、语义分割领域的大语言模型概述(ProLab、Segment Anything Model、CLIPSeg、Segment Everything Everywhere Model等)

3、案例演示与实操练习

第八章、LLaVA多模态大语言模型

1、LLaVA的核心技术与工作原理(模型拓扑结构讲解)

2、LLaVA与其他多模态模型的区别(LLaVA模型的优势有哪些?)

3、LLaVA的架构与训练(LLaVA的多模态输入处理与特征表示、视觉编码器与语言模型的结合、LLaVA的训练数据与预训练过程)

4、LLaVA的典型应用场景(图像问答、图像生成与描述等)

5、案例演示与实操练习

第九章、物理信息神经网络

(PINN) 1、物理信息神经网络的背景(物理信息神经网络(PINNs)的概念及其在科学计算中的重要性、传统数值模拟方法与PINNs的比较)

2、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)

3、案例演示         

4、实操练习

第十章、生成式模型

1、变分自编码器VAE(自编码器的基本结构与工作原理、降噪自编码器、掩码自编码器、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。

2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数、对抗样本的构造方法)。

3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。

4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。

5、案例演示            

6、实操练习

第十一章、自监督学习模型

1、自监督学习的基本概念(自监督学习的发展背景、自监督学习定义、与有监督学习和无监督学习的区别)

2、经典的自监督学习模型的基本原理、模型架构及训练过程(对比学习: SimCLR、MoCo;生成式方法:AutoEncoder、GPT;预文本任务:BERT掩码语言模型)

3、自监督学习模型的Python代码实现

4、案例演示            

5、实操练习

第十二章、图神经网络

1、图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)

2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。

3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。

4、图卷积网络(GCN)的工作原理。

5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。

6、案例演示        

7、实操练习

第十三章、强化学习

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?

2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。

3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)

4、案例演示         

5、实操练习

第十四章、深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征。

5、案例演示         

6、实操练习

第十五章、神经架构搜索(Neural Architecture Search, NAS)

1、NAS的背景和动机(传统的神经网络设计依赖经验和直觉,既耗时又可能达不到最优效果。通过自动搜索,可以发现传统方法难以设计的创新和高效架构。)

2、NAS的基本流程:搜索空间定义(确定搜索的网络架构的元素,如层数、类型的层、激活函数等。)、搜索策略(随机搜索、贝叶斯优化、进化算法、强化学习等)、性能评估

3、NAS的关键技术:进化算法(通过模拟生物进化过程,如变异、交叉和选择,来迭代改进网络架构)、强化学习(使用策略网络来生成架构,通过奖励信号来优化策略网络)、贝叶斯优化(利用贝叶斯方法对搜索空间进行高效的全局搜索,平衡探索和利用)

4、案例演示         

5、实操练习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/982154.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2025 聚合易支付完整版PHP网站源码

源码介绍 2025 聚合易支付完整版PHP网站源码 PHP版本:PHP74 源码上传服务器,解压访问域名即可安装 安装完成后一定要设置伪静态 源码里面nginx.txt 就是伪静态 然后复制粘贴到伪静态里面保存即可 部分截图 源码获取 2025 聚合易支付完整版PHP网站源码…

Spring Boot 3 整合 MinIO 实现分布式文件存储

引言 文件存储已成为一个做任何应用都不可回避的需求。传统的单机文件存储方案在面对大规模数据和高并发访问时往往力不从心,而分布式文件存储系统则提供了更好的解决方案。本篇文章我将基于Spring Boot 3 为大家讲解如何基于MinIO来实现分布式文件存储。 分布式存…

easyExcel使用案例有代码

easyExcel 入门,完成web的excel文件创建和导出 easyExcel官网 EasyExcel 的主要特点如下: 1、高性能:EasyExcel 采用了异步导入导出的方式,并且底层使用 NIO 技术实现,使得其在导入导出大数据量时的性能非常高效。 2、易于使…

NVIDIA(英伟达) GPU 芯片架构发展史

GPU 性能的关键参数 CUDA 核心数量(个):决定了 GPU 并行处理能力,在 AI 等并行计算类业务下,CUDA 核心越多性能越好。 显存容量(GB):决定了 GPU 加载数据量的大小,在 AI…

FFMPEG利用H264+AAC合成TS文件

本次的DEMO是利用FFMPEG框架把H264文件和AAC文件合并成一个TS文件。这个DEMO很重要,因为在后面的推流项目中用到了这方面的技术。所以,大家最好把这个项目好好了解。 下面这个是流程图 从这个图我们能看出来,在main函数中我们主要做了这几步&…

获取Kernel32基地址

暴力搜索 32位在4G内存搜索有一定可行性,但是处理起来其实还是比较麻烦的,因为内存不可读会触发异常,需要对这些异常问题进行处理。 优化思路:缩小范围、增大搜索步长 (1)不优化,原始内存特征匹配,容易出错&#xf…

【 <一> 炼丹初探:JavaWeb 的起源与基础】之 Servlet 与 JSP 的协作:MVC 模式的雏形

<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、Servl…

如何在Github上面上传本地文件夹

前言 直接在GitHub网址上面上传文件夹是不行的&#xff0c;需要一层一层创建然后上传&#xff0c;而且文件的大小也有限制&#xff0c;使用Git进行上传更加方便和实用 1.下载和安装Git Git - Downloads 傻瓜式安装即可 2.获取密钥对 打开自己的Github&#xff0c;创建SSH密钥&…

软件高级架构师 - 软件工程

补充中 测试 测试类型 静态测试 动态测试 测试阶段 单元测试中&#xff0c;包含性能测试&#xff0c;如下&#xff1a; 集成测试中&#xff0c;包含以下&#xff1a; 维护 遗留系统处置 高水平低价值&#xff1a;采取集成 对于这类系统&#xff0c;采取 集成 的方式&…

初始提示词(Prompting)

理解LLM架构 在自然语言处理领域&#xff0c;LLM&#xff08;Large Memory Language Model&#xff0c;大型记忆语言模型&#xff09;架构代表了最前沿的技术。它结合了存储和检索外部知识的能力以及大规模语言模型的强大实力。 LLM架构由外部记忆模块、注意力机制和语…

react中如何使用使用react-redux进行数据管理

以上就是react-redux的使用过程&#xff0c;下面我们开始优化部分&#xff1a;当一个组件只有一个render生命周期&#xff0c;那么我们可以改写成一个无状态组件&#xff08;UI组件到无状态组件&#xff0c;性能提升更好&#xff09;

Vue 监听器的魔法之旅:@Watch(‘form.productId’) vs @Watch(‘value’) 大揭秘!✨

以下是一篇技术博客&#xff0c;主题围绕 Watch(form.productId) 和 Watch(value) 这两个 watcher 的功能、区别及使用场景&#xff0c;基于 compare-form.vue 的代码。准备好一起探索 Vue 监听器的魔法了吗&#xff1f;&#x1f604; &#x1f604; Vue 监听器的魔法之旅&…

SqlSugar 语法糖推荐方式

//方式1&#xff1a;var dd _repository._Db.Queryable<ConfigAggregateRoot, UserRoleEntity>((o, p) > o.Id p.Id).Select((o, p) > new{o.Id,o.Remark,p.RoleId,});//方式2&#xff1a;不推荐使用&#xff0c;建议优先使用 Lambda 表达式&#xff0c;因为它更…

数据结构:八大排序(冒泡,堆,插入,选择,希尔,快排,归并,计数)详解

目录 一.冒泡排序 二.堆排序 三.插入排序 四.选择排序 五.希尔排序 六.快速排序 1.Lomuto版本&#xff08;前后指针法&#xff09; 2.Lomuto版本的非递归算法 3.hoare版本&#xff08;左右指针法&#xff09; 4.挖坑法找分界值&#xff1a; 七.归并排序 八.计数排序…

?算法1-4 小A点菜

题目描述 不过 uim 由于买了一些书&#xff0c;口袋里只剩 M 元 (M≤10000)。 餐馆虽低端&#xff0c;但是菜品种类不少&#xff0c;有 N 种 (N≤100)&#xff0c;第 i 种卖 ai​ 元 (ai​≤1000)。由于是很低端的餐馆&#xff0c;所以每种菜只有一份。 小 A 奉行“不把钱吃…

Linux设备驱动开发之摄像头驱动移植(OV5640)

驱动移植 这里用的是NXP提供的原厂linux内核源码&#xff0c;目的是学习ov5640相关摄像头驱动的移植。如图&#xff0c;下面是linux源码自带的ov5640的驱动相关代码&#xff1a; 这个是ov5640相关头文件&#xff1a; 新建一个文件夹保存这些ov5640的驱动文件&#xff0c;打算在…

DeepSeek使用手册分享-附PDF下载连接

本次主要分享DeepSeek从技术原理到使用技巧内容&#xff0c;这里展示一些基本内容&#xff0c;后面附上详细PDF下载链接。 DeepSeek基本介绍 DeepSeek公司和模型的基本简介&#xff0c;以及DeepSeek高性能低成本获得业界的高度认可的原因。 DeepSeek技术路线解析 DeepSeek V3…

ArcGIS Pro应用指南:如何为栅格图精确添加坐标信息

一、引言 在地理信息系统中&#xff0c;栅格图是一种重要的数据类型。 然而&#xff0c;有时我们从网络上获取的栅格图并不包含坐标信息&#xff0c;这使得它们难以与其他带有坐标信息的数据进行集成和分析。 为了解决这一问题&#xff0c;我们需要对栅格图进行地理配准&…

机器学习4-PCA降维

1 降维 在数据处理过程中&#xff0c;会碰到维度爆炸&#xff0c;维度灾难的情况&#xff0c;为了得到更精简更有价值的信息&#xff0c;我们需要进一步处理&#xff0c;用的方法就是降维。 降维有两种方式&#xff1a;特征抽取、特征选择 特征抽取&#xff1a;就是特征映射…

辛格迪客户案例 | 深圳善康医药科技GMP培训管理(TMS)项目

01 善康医药&#xff1a;创新药领域的探索者 深圳善康医药科技股份有限公司自2017年创立以来&#xff0c;便扎根于创新药研发领域&#xff0c;专注于成瘾治疗药物的研究、生产与销售。公司坐落于深圳&#xff0c;凭借自身独特的技术优势与研发实力&#xff0c;在行业内逐渐崭露…