如何通过卷积神经网络(CNN)有效地提取图像的局部特征,并在CIFAR-10数据集上实现高精度的分类?

目录

1. CNN 提取图像局部特征的原理

2. 在 CIFAR - 10 数据集上实现高精度分类的步骤

2.1 数据准备

2.2 构建 CNN 模型

2.3 定义损失函数和优化器

2.4 训练模型

2.5 测试模型

3. 提高分类精度的技巧


卷积神经网络(Convolutional Neural Network, CNN)是专门为处理具有网格结构数据(如图像)而设计的深度学习模型,能够有效地提取图像的局部特征。下面将详细介绍如何通过 CNN 提取图像局部特征,并在 CIFAR - 10 数据集上实现高精度分类,同时给出基于 PyTorch 的示例代码。

1. CNN 提取图像局部特征的原理

  • 卷积层:卷积层是 CNN 的核心组件,它通过使用多个卷积核(滤波器)在图像上滑动进行卷积操作。每个卷积核可以看作是一个小的矩阵,用于检测图像中的特定局部特征,如边缘、纹理等。卷积操作会生成一个特征图,特征图上的每个元素表示卷积核在对应位置检测到的特征强度。
  • 局部连接:CNN 中的神经元只与输入图像的局部区域相连,而不是像全连接网络那样与所有输入神经元相连。这种局部连接方式使得网络能够专注于提取图像的局部特征,减少了参数数量,提高了计算效率。
  • 权值共享:在卷积层中,同一个卷积核在整个图像上共享一组权重。这意味着卷积核在不同位置检测到的特征是相同的,进一步减少了参数数量,同时增强了网络对平移不变性的学习能力。
  • 池化层:池化层通常紧跟在卷积层之后,用于对特征图进行下采样,减少特征图的尺寸,降低计算量,同时增强特征的鲁棒性。常见的池化操作有最大池化和平均池化。

2. 在 CIFAR - 10 数据集上实现高精度分类的步骤

2.1 数据准备

CIFAR - 10 数据集包含 10 个不同类别的 60000 张 32x32 彩色图像,其中训练集 50000 张,测试集 10000 张。可以使用 PyTorch 的torchvision库来加载和预处理数据。

import torch
import torchvision
import torchvision.transforms as transforms

# 定义数据预处理步骤
transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),  # 随机裁剪
    transforms.RandomHorizontalFlip(),  # 随机水平翻转
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化
])

# 加载训练集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
                                          shuffle=True, num_workers=2)

# 加载测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
2.2 构建 CNN 模型

可以构建一个简单的 CNN 模型,包含卷积层、池化层和全连接层。

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.fc1 = nn.Linear(128 * 8 * 8, 512)
        self.fc2 = nn.Linear(512, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        x = F.relu(self.conv3(x))
        x = F.relu(self.conv4(x))
        x = self.pool(x)
        x = x.view(-1, 128 * 8 * 8)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = Net()
2.3 定义损失函数和优化器

使用交叉熵损失函数和随机梯度下降(SGD)优化器。

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
2.4 训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)

for epoch in range(20):  # 训练20个epoch
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 200 == 199:
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 200:.3f}')
            running_loss = 0.0

print('Finished Training')
2.5 测试模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data[0].to(device), data[1].to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')

3. 提高分类精度的技巧

  • 数据增强:通过随机裁剪、翻转、旋转等操作增加训练数据的多样性,提高模型的泛化能力。
  • 更深的网络结构:可以使用更复杂的 CNN 架构,如 ResNet、VGG 等,这些网络通过引入残差连接、批量归一化等技术,能够更好地学习图像特征。
  • 学习率调整:在训练过程中动态调整学习率,如使用学习率衰减策略,使模型在训练初期快速收敛,后期更精细地调整参数。
  • 正则化:使用 L1 或 L2 正则化、Dropout 等技术防止模型过拟合。

通过以上步骤和技巧,可以有效地利用 CNN 提取图像的局部特征,并在 CIFAR - 10 数据集上实现高精度的分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/981842.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue3 vite 两种监听pinia状态变化的方式比较:watch, $subscribe

首先搭建vue3 vite 项目 npm create vue选择pinia 或者自己安装pinia 自己安装需要 npm install pinia并在main.js中挂在上: const pinia createPinia() const app createApp(App) app.use(pinia) app.mount(#app)创建stores文件夹和counter.js文件 counter.j…

【算法学习之路】5.贪心算法

贪心算法 前言一.什么是贪心算法二.例题1.合并果子2.跳跳!3. 老鼠和奶酪 前言 我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,题单正在更新&#xf…

【ThreeJS Basics 1-6】Camera

文章目录 Camera 相机PerspectiveCamera 透视相机正交相机用鼠标控制相机大幅度转动(可以看到后面) 控制组件FlyControls 飞行组件控制FirstPersonControls 第一人称控制PointerLockControls 指针锁定控制OrbitControls 轨道控制TrackballControls 轨迹球…

Java+SpringBoot+Vue+数据可视化的百草园化妆服务平台(程序+论文+讲解+安装+调试+售后)

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复,希望帮助更多的人。 系统背景 市场需求催生 在当今社会,化妆已经成为人们日常生活和各种重要场合中不可或…

React:Redux

Redux引入 Redux感觉像组件通信的中介 state存放被管理的状态 action是申请改哪些数据,传入什么参数 reducer是怎么修改数据 我的理解更像是action像一个储存方法的对象,reducer是具体的方法的实现,不同的方法实现也不一样 store是个仓库…

【AI实践】基于TensorFlow/Keras的CNN(卷积神经网络)简单实现:手写数字识别的工程实践

深度神经网络系列文章 【AI深度学习网络】卷积神经网络(CNN)入门指南:从生物启发的原理到现代架构演进【AI实践】基于TensorFlow/Keras的CNN(卷积神经网络)简单实现:手写数字识别的工程实践 引言 在深度…

学习threejs,使用LineBasicMaterial基础线材质

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.LineBasicMaterial1.…

【0010】Python流程控制结构-分支结构详解

如果你觉得我的文章写的不错,请关注我哟,请点赞、评论,收藏此文章,谢谢! 本文内容体系结构如下: 分支结构是编程中的基本控制结构之一,它允许程序根据条件判断执行不同的代码路径。通过本文&…

python网络爬虫开发实战之基本库使用

目录 第二章 基本库的使用 2.1 urllib的使用 1 发送请求 2 处理异常 3 解析链接 4 分析Robots协议 2.2 requests的使用 1 准备工作 2 实例引入 3 GET请求 4 POST请求 5 响应 6 高级用法 2.3 正则表达式 1 实例引入 2 match 3 search 4 findall 5 sub 6 com…

pytest框架 核心知识的系统复习

1. pytest 介绍 是什么:Python 最流行的单元测试框架之一,支持复杂的功能测试和插件扩展。 优点: 语法简洁(用 assert 替代 self.assertEqual)。 自动发现测试用例。 丰富的插件生态(如失败重试、并发执…

Java 大视界 -- Java 大数据在智慧交通信号灯智能控制中的应用(116)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

Electron桌面应用开发:自定义菜单

完成初始应用的创建Electron桌面应用开发:创建应用,随后我们就可以自定义软件的菜单了。菜单可以帮助用户快速找到和执行命令,而不需要记住复杂的快捷键,通过将相关功能组织在一起,用户可以更容易地发现和使用应用程序…

探索低空,旅游景区无人机应用技术详解

在低空领域,无人机技术在旅游景区中的应用已经日益广泛,为旅游业带来了前所未有的变革。以下是对旅游景区无人机应用技术的详细解析: 一、无人机景区巡检系统 1. 高清拍摄与实时监控:无人机搭载高清摄像头,能够对景区…

Python-07PDF转Word

2025-03-04-PDF转Word DeepSeek等大模型从来都不是简单的写一个静态博客这么肤浅(太多博主都只讲这个内容了)借助全网大神的奇思妙想,拓展我狭隘的思维边界。 文章目录 2025-03-04-PDF转Word [toc]1-参考网址2-学习要点3-核心逻辑4-核心代码 …

【c语言函数精选题】

c语言函数精选题 一、易错概念题1.1💡建立函数的目的1.2💡函数的定义1.3💡return语句1.4💡函数的参数1.5💡复合语句声明变量 二、代码填空题2.1💡四舍五入2.2💡二分法求方程根2.3💡输…

储油自动化革命,网关PROFINET与MODBUS网桥的无缝融合,锦上添花

储油行业作为能源供应链的关键环节,其自动化和监控系统的可靠性和效率至关重要。随着工业4.0的推进,储油设施越来越多地采用先进的自动化技术以提高安全性、降低成本并优化运营。本案例探讨了如何通过使用稳联技术PROFINET转MODBUS模块网关网桥&#xff…

不同类型光谱相机的技术差异比较

一、波段数量与连续性 ‌多光谱相机‌ 波段数:通常4-9个离散波段,光谱范围集中于400-1000nm‌。 数据特征:光谱呈阶梯状,无法连续覆盖,适用于中等精度需求场景(如植被分类)‌。 ‌高光谱相机…

Linux纯命令行界面下SVN的简单使用教程

诸神缄默不语-个人技术博文与视频目录 我用的VSCode插件是这个: 可以在文件中用色块显示代码修改了什么地方,点击色块还可以显示修改内容。 文章目录 1. SVN安装2. checkout3. update1. 将文件加入版本控制 4. commit5. 查看SVN信息:info6.…

STM32单片机芯片与内部114 DSP-变换运算 实数 复数 FFT IFFT 不限制点数

目录 一、ST 官方汇编 FFT 库(64点, 256 点和 1024 点) 1、cr4_fft_xxx_stm32 2、计算幅频响应 3、计算相频响应 二、复数浮点 FFT、IFFT(支持单精度和双精度) 1、基础支持 2、单精度函数 arm_cfft_f32 3、双精…

在IDEA中进行git回滚操作:Reset current branch to here‌或Reset HEAD

问题描述 1)在本地修改好的代码,commit到本地仓库,突然发觉有问题不想push推到远程仓库了,但它一直在push的列表中存在,那该怎么去掉push列表中的内容呢? 2)合并别的分支到当前分支&#xff0…