三维重建(十五)——多尺度(coarse-to-fine)

文章目录

  • 一、多尺度与图像金字塔:从全局结构到局部细节
  • 二、特征提取与匹配
    • 2.1 从数据采集的角度
    • 2.2 从数据增强的角度
    • 2.3 从特征提取的方式
  • 三、以多尺度的方式使用特征
    • 3.1 特征提取与匹配
      • 3.1.1 多尺度特征检测
      • 3.1.2 金字塔匹配
    • 3.2 深度估计与立体匹配
      • 3.2.1 多尺度立体匹配
      • 3.2.2 金字塔方法
  • 四、在三维模型上进行多尺度
  • 五、多尺度优化策略
    • 5.1 多尺度优化
    • 5.2 多尺度数据融合
    • 5.3 不同尺度的设定
  • 六、根据语义划分尺度
    • 6.1 核心思想
    • 6.2 语义信息的引入
    • 6.2 多尺度处理
  • 七、实验步骤
    • 7.1 数据获取与预处理
    • 7.2 语义分割
    • 7.3 尺度分配策略
    • 7.4 多尺度特征提取与融合
    • 7.5 三维重建与优化
  • 八、论文
    • 8.1 Deformable NeRF using Recursively Subdivided Tetrahedra
    • 8.2 City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web
    • 8.3 Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering
    • 8.4 MonoSDF: Exploring Monocular Geometric Cuesfor Neural lmplicit Surface Reconstruction
    • 8.5 Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
    • 8.6 PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization
  • 九、其他
    • 9.1 shortcut
    • 9.2 超分
  • 参考文章

多尺度是一种策略、技巧;而不是思想,已经算是基础操作了

一、多尺度与图像金字塔:从全局结构到局部细节

在这里插入图片描述
图像金字塔:逐层下采样,或者卷积。到高维这里,可能就是黄色的东西,当然,可能中间会加入shortcut,把前面的东西加到后面去。
VIT就是算一个像素之间的注意力;
整体的核心就是,从不同的分辨率去感知这个图像,会有不同的效果。计算量的权衡问题;比如输入是个高分辨率的图片,比如做三维重建,可能就会对于显存有很大的压力的存在,所以可能需要进行下采样这个情况。
还有就是切出一小块区域,有点是局部的细节是有了,但是对于整体式没法感知的。
还有就是coarse to fine的思想(对于特征提取和重建)就是一开始是对非常分辨率特别低的图片进行提取或者重建(当然,此时的效果并不好),之后再对前一次的图片的信息,进行细化,逐步精确。
优势是可以平衡显存和计算量的问题,不用一开始就把显存拉的很高。可以在一定程度上增加模型的鲁棒性。如果一开始

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/981626.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TMS320F28P550SJ9学习笔记2:Sysconfig 配置与点亮LED

今日学习使用Sysconfig 对引脚进行配置,并点亮开发板上的LED4 与LED5 我的单片机开发板平台是 LAUNCHXL_F28P55x 我是在上文描述的驱动库C2000ware官方例程example的工程基础之上进行添加功能的 该例程路径如下:D:\C2000Ware_5_04_00_00\driverlib\f28p…

[Windows] 批量为视频或者音频生成字幕 video subtitle master 1.5.2

Video Subtitle Master 1.5.2 介绍 Video Subtitle Master 1.5.2 是一款功能强大的客户端工具,能够批量为视频或音频生成字幕,还支持批量将字幕翻译成其他语言。该工具具有跨平台性,无论是 mac 系统还是 windows 系统都能使用。 参考原文&a…

Vue3的核心语法【未完】

Vue3的核心语法 OptionsAPI与CompositionAPI Options API(选项式) 和 Composition API (组合式)是 Vue.js 中用于构建组件的两种不同方式。Options API Options API Options API 是 Vue 2 中的传统模式,并在 Vue 3…

计算机视觉|ViT详解:打破视觉与语言界限

一、ViT 的诞生背景 在计算机视觉领域的发展中,卷积神经网络(CNN)一直占据重要地位。自 2012 年 AlexNet 在 ImageNet 大赛中取得优异成绩后,CNN 在图像分类任务中显示出强大能力。随后,VGG、ResNet 等深度网络架构不…

BUU44 [BJDCTF2020]ZJCTF,不过如此1 [php://filter][正则表达式get输入数据][捕获组反向引用][php中单双引号]

题目: 我仿佛见到了一位故人。。。也难怪,题目就是ZJCTF 按要求提交/?textdata://,I have a dream&filenext.php后: ......不太行,好像得用filephp://filter/convert.base64-encode/resourcenext.php 耶?那 f…

区块链-未来世界的网络形态?

前言 各位读者们,时隔半年作者终于想起了自己的账号密码,今天终于又双叒叕更新啦。今天带给大家的内容仍旧是区块链相关,主要谈谈作者对区块链行业的看法,废话不多说让我们开始发车(扶稳坐好)。 引言 过去的几个月中,比…

Linux总结

1 用户与用户组管理 1.1 用户与用户组 //linux用户和用户组 Linux系统是一个多用户多任务的分时操作系统 使用系统资源的用户需要账号进入系统 账号是用户在系统上的标识,系统根据该标识分配不同的权限和资源 一个账号包含用户和用户组 //用户分类 超级管理员 UID…

掌握 findIndex、push 和 splice:打造微信小程序的灵活图片上传功能✨

文章目录 ✨ 掌握 findIndex、push 和 splice:打造微信小程序的灵活图片上传功能 🌟示例场景:小程序图片上传🌼 认识 findIndex定义语法在代码中的应用示例当前行为 🚀 认识 push定义语法在代码中的应用示例特点 ✂️ …

【Java】—— 堆

一、堆的定义 在计算机科学中,堆(heap)是一种特殊的树状数据结构。用于存储和管理数据。堆通常用于实现优先队列。其中具有最高(或最低)优先级的元素始终位于堆的根部。 堆分为最小堆和最大堆两种类型: …

Windows 使用 Docker + WSL2 部署 Ollama(AMD 显卡推理)搭建手册‌

Windows 使用 Docker WSL2 部署 Ollama(AMD 显卡推理)搭建手册‌ ‌手册目标‌ 在 Windows 11 上通过 ‌Docker WSL2‌ 调用 AMD 显卡运行 Ollama 推理服务。 实现 ‌低延迟、高性能的本地模型推理‌,同时不影响 Windows 正常使用。 标记…

【每天认识一个漏洞】shiro反序列化漏洞

🌝博客主页:菜鸟小羊 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 以下是在实际业务中遇到的一个漏洞,仅用来学习,通过暴露的 /actuator/heapdump 端点获取 Shiro key…

【AI大模型】DeepSeek + Kimi 高效制作PPT实战详解

目录 一、前言 二、传统 PPT 制作问题 2.1 传统方式制作 PPT 2.2 AI 大模型辅助制作 PPT 2.3 适用场景对比分析 2.4 最佳实践与推荐 三、DeepSeek Kimi 高效制作PPT操作实践 3.1 Kimi 简介 3.2 DeepSeek Kimi 制作PPT优势 3.2.1 DeepSeek 优势 3.2.2 Kimi 制作PPT优…

音频3A测试--AGC(自动增益)和NS(降噪)测试

一、测试前期准备 一台电脑:用于作为控制播放和录制数据; 一台音频处理器(调音台):控制每个通道播放的数据,如噪声、人工头、模拟设备B输入的数据、收集标准麦克风,设备A处理完成的数据; 四个高保真音响&…

zabbix配置邮件告警

目录 实现步骤: 实现目的: 1.在监控端操作: 2.web界面部署 ​​​​​​​实现步骤: 1、在 zabbix服务端配置邮件发送脚本和修改 zabbix服务端配置文件; 2、在 zabbix前端控制台进行相关设置。 实现目的: Zab…

PHP fastadmin 学习

安装php环境安装mysql插件 修改 php.ini下载 phpstudy、fastadmin 错误 安装FastAdmin could not find driver 参考链接 安装插件 创建1.php <? phpinfo(); ?>运行 http://127.0.0.1/1.php 查看 POD 页面访问404 伪静态 Apache <IfModule mod_rewrite.c> O…

PARETO PROMPT OPTIMIZATION

题目 帕累托提示优化 论文地址&#xff1a;https://openreview.net/forum?idHGCk5aaSvE 摘要 自然语言迅速优化或及时工程已成为一种强大的技术&#xff0c;可以解锁大型语言模型&#xff08;LLMS&#xff09;的各种任务的潜力。尽管现有方法主要集中于最大化LLM输出的单一特…

Agent智能体是什么?

文章目录 一、Agent的起源与发展1.1时间线1.2核心驱动力 二、Agent的定义与架构2.1基本定义2.2典型结构&#xff08;以GPTs为例&#xff09; 三、OpenAI的Agent演进路径3.1关键阶段3.2技术支撑3.3 GPTs生态经济模型 四、其他Agent平台对比五、Agent实践案例5.1文本处理自动化5.…

【Linux第三弹】Linux基础指令 (下)

目录 &#x1f31f;1.find指令 1.1find使用实例 ​编辑 &#x1f31f;2.which指令 &#x1f31f;3.grep指令 3.1grep使用实例 &#x1f31f; 4.zip/unzip指令 4.1 zip/unzip使用实例 &#x1f31f;5.tar指令 5.1 tar使用实例 &#x1f31f;6.完结 很庆幸走在自己…

【Laplacian边缘检测详解】

Laplacian边缘检测详解 目录 Laplacian边缘检测详解一. 定义二. 原理三. 特点四. 使用技巧五. MATLAB示例代码示例1&#xff1a;基本Laplacian边缘检测示例2&#xff1a;扩展Laplacian核的使用示例3&#xff1a;与Sobel边缘检测的比较示例4&#xff1a;检测图像中的文字边缘示例…

为什么要学习数据结构与算法

今天&#xff0c;我向大家介绍一门非常重要的课程——《数据结构与算法》。这门课不仅是计算机学科的核心&#xff0c;更是每一位开发者从“小白”迈向“高手”的必经之路。 1、为什么要学习数据结构与算法 总的来说&#xff0c;数据结构与算法是&#xff1a; 求职的“敲门砖”…