物理竞赛中的线性代数

线性代数

1 行列式

1.1 n n n 阶行列式

定义 1.1.1:称以下的式子为一个 n n n 阶行列式
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix}\mathbf A\end{vmatrix}= \begin{vmatrix} a_{11}& a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix} A = a11a21an1a12a22an2a1na2nann

其中第 i i i 行第 j j j 列的元素成为行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 的第 ( i , j ) (i,j) (i,j) 元素。
元素 a 11 , a 22 , ⋯   , a n n a_{11},a_{22},\cdots,a_{nn} a11,a22,,ann 称为 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 的主对角线。

性质 1:上三角行列式的值等于其对角线元素之和。
性质 2:行列式某行(列)全为零,则行列式的值等于零。
性质 3:用常数 c c c 乘以行列式的某一行(列),得到的行列式的值等于原行列式的值的 c c c 倍。
性质 4:交换行列式不同的两行(列),行列式的值变号。
性质 5:若行列式两行(列)成比例,则行列式的值为零。
性质 6:若行列式中某行(列)元素均为两项之和,则行列式可表示为两个行列式之和。
性质 7:行列式的某一行(列)乘以某个数加到另一行(列)上,行列式的值不变。
性质 8:行列式和其转置有相同的值。

定义 1.1.2:定义元素 a i j a_{ij} aij余子式 M i j M_{ij} Mij 为由其行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 中划去第 i i i 行第 j j j 列后剩下的元素组成的行列式。
定义 1.1.3:在行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 中, a i j a_{ij} aij代数余子式定义为: A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij,其中 M i j M_{ij} Mij a i j a_{ij} aij 的余子式。

1.2 行列式的展开

∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A n n n 阶行列式,元素 a i j a_{ij} aij 的代数余子式记为 A i j A_{ij} Aij,则对任意 s , r ( = 1 , 2 , ⋯   , n ) , s ≠ r s,r(=1,2,\cdots,n),s\neq r s,r(=1,2,,n),s=r 存在:
∣ A ∣ = ∑ i = 1 n a i r A i r ∑ i = 1 n a i r A i s = 0 \begin{vmatrix}\mathbf A\end{vmatrix}=\sum\limits_{i=1}^n a_{ir}A_{ir} \\ \sum\limits_{i=1}^n a_{ir}A_{is}=0 A =i=1nairAiri=1nairAis=0

1.3 Cramer 法则

设线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2                            ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2                          an1x1+an2x2++annxn=bn
记其系数行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A ,则:
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , ⋯   , x n = ∣ A n ∣ ∣ A ∣ x_1=\dfrac{\begin{vmatrix}\mathbf A_1\end{vmatrix}}{\begin{vmatrix}\mathbf A\end{vmatrix}},x_2=\dfrac{\begin{vmatrix}\mathbf A_2\end{vmatrix}}{\begin{vmatrix}\mathbf A\end{vmatrix}},\cdots,x_n=\dfrac{\begin{vmatrix}\mathbf A_n\end{vmatrix}}{\begin{vmatrix}\mathbf A\end{vmatrix}} x1= A A1 ,x2= A A2 ,,xn= A An

其中 ∣ A j ∣ \begin{vmatrix}\mathbf A_j\end{vmatrix} Aj ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 去掉第 j j j 列并用 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn 将之替换的 n n n 阶行列式。

2 矩阵

2.1 矩阵的概念

定义 2.1.1:由 m n mn mn 个数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯ n ) a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots n) aij(i=1,2,,m;j=1,2,n) 排成 m m m n n n 列的矩形阵列:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \\ \end{matrix} a11a21an1a12a22an2a1na2nann
称为 m m m n n n 列矩阵,简称为 m × n m\times n m×n 矩阵(或 m × n m\times n m×n 阵)。

A \mathbf A A 的元素全是实数则称 A \mathbf A A实矩阵
A \mathbf A A 的元素全是复数则称 A \mathbf A A复矩阵
若所有元素均为 0 0 0 则称为零矩阵 O \mathrm O O,或 O m × n \mathrm O_{m\times n} Om×n
m = n m=n m=n 则称为方阵,反之为长方阵
若方阵 A \mathbf A A 仅存在对角元 a 11 , a 22 , ⋯   , a n n a_{11},a_{22},\cdots,a_{nn} a11,a22,,ann 则简记为 A = d i a g ( a 11 , a 22 , ⋯   , a n n ) \mathbf A=\mathbf{diag}(a_{11},a_{22},\cdots,a_{nn}) A=diag(a11,a22,,ann)
进一步,若 a 11 = a 22 = ⋯ = a n n = 1 a_{11}=a_{22}=\cdots=a_{nn}=1 a11=a22==ann=1 则称 I n = d i a g ( 1 , 1 , ⋯   , 1 ) \mathbf {I_n}=\mathbf{diag}(1,1,\cdots,1) In=diag(1,1,,1) n n n 阶单位矩阵

2.2 矩阵的运算
一、矩阵加减法

定义 2.2.1:设有两个 m × n m\times n m×n 矩阵 A = ( a i j ) , B = ( b i j ) \mathbf A=(a_{ij}),\mathbf B=(b_{ij}) A=(aij),B=(bij),定义 A + B \mathbf A+\mathbf B A+B 是一个 m × n m\times n m×n 矩阵且 A + B \mathbf A+\mathbf B A+B 的第 ( i , j ) (i,j) (i,j) 元素等于 a i j + b i j a_{ij}+b_{ij} aij+bij,即 A + B = ( a i j + b i j ) \mathbf A+\mathbf B=(a_{ij}+b_{ij}) A+B=(aij+bij)
矩阵的减法可看作矩阵加法的逆运算,即
A − B = ( a i j − b i j ) \mathbf A-\mathbf B=(a_{ij}-b_{ij}) AB=(aijbij)
定义 2.2.2:定义 A = ( a i j ) \mathbf A=(a_{ij}) A=(aij) 的负矩阵为 − A = ( − a i j ) -\mathbf A=(-a_{ij}) A=(aij),则有 A + ( − A ) = O \mathbf A+(-\mathbf A)=\mathbf O A+(A)=O

矩阵加减法运算规则

  1. 交换律: A + B = B + A \mathbf A+\mathbf B=\mathbf B+\mathbf A A+B=B+A
  2. 结合律: ( A + B ) + C = A + ( B + C ) (\mathbf A+\mathbf B)+\mathbf C=\mathbf A+(\mathbf B+\mathbf C) (A+B)+C=A+(B+C)
  3. O + A = A + O = A \mathbf O+\mathbf A=\mathbf A+\mathbf O=\mathbf A O+A=A+O=A
  4. A + ( − B ) = A − B \mathbf A+(-\mathbf B)=\mathbf A-\mathbf B A+(B)=AB
二、矩阵的数乘

定义 2.2.3:设 A \mathbf A A 是一个 m × n m\times n m×n 矩阵, A = ( a i j ) m × n \mathbf A=(a_{ij})_{m\times n} A=(aij)m×n c c c 是一个常数,定义 c A = ( c a i j ) m × n c\mathbf A=(ca_{ij})_{m\times n} cA=(caij)m×n c A c\mathbf A cA 称为数 c A c\mathbf A cA 的数乘。

矩阵的数乘运算规则

  1. c ( A + B ) = c A + c B c(\mathbf A+\mathbf B)=c\mathbf A+c\mathbf B c(A+B)=cA+cB
  2. ( c + d ) A = c A + d A (c+d)\mathbf A=c\mathbf A+d\mathbf A (c+d)A=cA+dA
  3. ( c d ) A = c ( d A ) (cd)\mathbf A=c(d\mathbf A) (cd)A=c(dA)
  4. 1 ⋅ A = A 1\cdot\mathbf A=\mathbf A 1A=A
  5. 0 ⋅ A = O 0\cdot\mathbf A=\mathbf O 0A=O
三、矩阵的乘法

定义 2.2.4:设有 m × k m\times k m×k 矩阵 A = ( a i j ) m × k \mathbf A=(a_{ij})_{m\times k} A=(aij)m×k,以及 k × n k\times n k×n 矩阵 B = ( b i j ) m × n \mathbf B=(b_{ij})_{m\times n} B=(bij)m×n。定义 A \mathbf A A B \mathbf B B 的乘积 A B \mathbf A\mathbf B AB 是一个 m × n m\times n m×n 矩阵且 A B \mathbf A\mathbf B AB 的第 ( i , j ) (i,j) (i,j) 元素
c i j = ∑ l = 1 k a i l b l j c_{ij}=\sum\limits_{l=1}^ka_{il}b_{lj} cij=l=1kailblj

矩阵乘法的运算规则

  1. 结合律: ( A B ) C = A ( B C ) (\mathbf A\mathbf B)\mathbf C=\mathbf A(\mathbf B\mathbf C) (AB)C=A(BC)
  2. 左右分配律: A ( B + C ) = A B + A C , ( A + B ) C = A B + B C \mathbf A(\mathbf B+\mathbf C)=\mathbf A\mathbf B+\mathbf A\mathbf C,(\mathbf A+\mathbf B)\mathbf C=\mathbf A\mathbf B+\mathbf B\mathbf C A(B+C)=AB+AC,(A+B)C=AB+BC
  3. c ( A B ) = ( c A ) B = A ( c B ) c(\mathbf A\mathbf B)=(c\mathbf A)\mathbf B=\mathbf A(c\mathbf B) c(AB)=(cA)B=A(cB)
  4. 对任意的 m × n m\times n m×n 矩阵 A \mathbf A A I m A = A = A I n \mathbf {I_m}\mathbf A=\mathbf A=\mathbf A\mathbf {I_n} ImA=A=AIn

方阵幂运算规则

  1. A r A s = A r + s \mathbf A^r\mathbf A^s=\mathbf A^{r+s} ArAs=Ar+s
  2. ( A r ) s = A r s (\mathbf A^r)^s=\mathbf A^{rs} (Ar)s=Ars
四、矩阵的转置

定义 2.2.5:设 A = ( a i j ) \mathbf A=(a_{ij}) A=(aij) m × n m\times n m×n 矩阵,定义 A \mathbf A A 的转置 A T \mathbf A^{\mathbf T} AT 为一个 n × m n\times m n×m 矩阵,它的第 k k k 行正好是矩阵 A \mathbf A A 的第 k k k 列( k = 1 , 2 , ⋯   , n k=1,2,\cdots,n k=1,2,,n);它的第 r r r 行是 A \mathbf A A 的第 r r r 行( r = 1 , 2 , ⋯   , n r=1,2,\cdots,n r=1,2,,n)。

矩阵转置运算规则

  1. ( A T ) T = A (\mathbf A^{\mathbf T})^{\mathbf T}=\mathbf A (AT)T=A
  2. ( A + B ) T = A T + B T (\mathbf A+\mathbf B)^{\mathbf T}=\mathbf A^{\mathbf T}+\mathbf B^{\mathbf T} (A+B)T=AT+BT
  3. ( c A ) T = c A T (c\mathbf A)^{\mathbf T}=c\mathbf A^{\mathbf T} (cA)T=cAT
  4. ( A B ) T = B T A T (\mathbf A\mathbf B)^{\mathbf T}=\mathbf B^{\mathbf T}\mathbf A^{\mathbf T} (AB)T=BTAT
五、矩阵的共轭

定义 2.2.6:设 A = ( a i j ) m × n \mathbf A=(a_{ij})_{m\times n} A=(aij)m×n 是一个复矩阵,则 A \mathbf A A共轭矩阵 A ‾ \overline{\mathbf A} A 是一个 m × n m\times n m×n 复矩阵,且
A ‾ = ( a ‾ i j ) m × n \overline{\mathbf A}=(\overline a_{ij})_{m\times n} A=(aij)m×n

矩阵共轭运算规则

  1. A + B ‾ = A ‾ + B ‾ \overline{\mathbf A+\mathbf B}=\overline {\mathbf A}+\overline {\mathbf B} A+B=A+B
  2. c A ‾ = c ‾ A ‾ \overline{c\mathbf A}=\overline c \overline {\mathbf A} cA=cA
  3. A B ‾ = A ‾   B ‾ \overline{\mathbf A \mathbf B}=\overline{\mathbf A}\ \overline {\mathbf B} AB=A B
  4. ( A T ) ‾ = ( A ‾ ) T \overline{({\mathbf A}^{\mathbf T})}=(\overline{\mathbf A})^{\mathbf T} (AT)=(A)T
2.3 方阵的逆阵

定义 2.3.1:设 A \mathbf A A n n n 阶方阵,若存在一个 n n n 阶方阵 B \mathbf B B,使得:
A B = B A = I n , \mathbf A\mathbf B=\mathbf B\mathbf A=\mathbf {I_n}, AB=BA=In,
则称 B \mathbf B B A \mathbf A A逆阵,记为 B = A − 1 \mathbf B=\mathbf A^{-1} B=A1。凡有逆阵的矩阵称为可逆阵非奇异阵(简称非异阵),否则称为奇异阵

矩阵求逆运算规则

  1. A \mathbf A A 是非异阵,则 ( A − 1 ) − 1 = A (\mathbf A^{-1})^{-1}=\mathbf A (A1)1=A
  2. A , B \mathbf A,\mathbf B A,B 都是 n n n 阶非异阵,则 A B \mathbf A\mathbf B AB 也是 n n n 阶非异阵且 ( A B ) − 1 = B − 1 A − 1 (\mathbf A\mathbf B)^{-1}=\mathbf B^{-1}\mathbf A^{-1} (AB)1=B1A1
  3. A \mathbf A A 是非异阵, c c c 是非零数,则 c A c\mathbf A cA 也是非异阵且 ( c A ) − 1 = c − 1 A − 1 (c\mathbf A)^{-1}=c^{-1}\mathbf A^{-1} (cA)1=c1A1
  4. A \mathbf A A 是非异阵,则 A \mathbf A A 的转置 A T \mathbf A^{\mathbf T} AT 也是非异阵且 ( A T ) − 1 = ( A − 1 ) T (\mathbf A^{\mathbf T})^{-1}=(\mathbf A^{-1})^{\mathbf T} (AT)1=(A1)T

A \mathbf A A n n n 阶方阵,这个方阵决定了一个 n n n 阶行列式,记为 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A det ⁡ A \det\mathbf A detA

定义 2.3.2 :设 A A A n n n 阶方阵, A i j A_{ij} Aij 是行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 中第 ( i , j ) (i,j) (i,j) 元素 a i j a_{ij} aij 的代数余子式,则称下列方阵为 A \mathbf A A伴随阵
( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) \begin{pmatrix} A_{11}&A_{21}&\cdots &A_{n1} \\ A_{12}&A_{22}&\cdots &A_{n2} \\ \vdots&\vdots&\ddots &\vdots \\ A_{1n}&A_{2n}&\cdots &A_{nn} \end{pmatrix} A11A12A1nA21A22A2nAn1An2Ann
A \mathbf A A 的伴随矩通常记为 A ∗ \mathbf {A^*} A

引理 2.3.1:设 A \mathbf A A n n n 阶方阵, A ∗ \mathbf A^* A A \mathbf A A 的伴随矩,则
A A ∗ = A ∗ A = ∣ A ∣ ⋅ I n \mathbf A\mathbf A^*=\mathbf A^*\mathbf A=\begin{vmatrix}\mathbf A\end{vmatrix}\cdot\mathbf{I_{n}} AA=AA= A In

定理 2.3.1:若 ∣ A ∣ ≠ 0 \begin{vmatrix}\mathbf A\end{vmatrix}\neq0 A =0,则 A \mathbf A A 是一个非异阵,且
A − 1 = 1 ∣ A ∣ A ∗ \mathbf A^{-1}=\dfrac{1}{\begin{vmatrix}\mathbf A\end{vmatrix}} \mathbf A^* A1= A 1A

2.4 矩阵的初等变换与初等矩阵

定义 2.4.1:下列三种矩阵变换分别称为矩阵的第一类、第二类、第三类初等行(列)变换:

  1. 对调矩阵中某两行(列)的位置;
  2. 用一非零常数 c c c 乘以矩阵的某一行(列);
  3. 将矩阵的某一行(列)乘以常数 c c c 后加到另一行(列)上去。

上述 3 3 3 种变换统称为矩阵的初等变换

2.5 初等变换法求逆阵

众所周知,用伴随阵求非异阵的逆阵是相当麻烦的,有没有什么更加强势的做法推荐一下:
有的兄弟有的:
A − 1 A = I n A − 1 = A − 1 I n \mathbf A^{-1}\mathbf A=\mathbf {I_n} \\ \mathbf A^{-1}=\mathbf A^{-1}\mathbf {I_n} A1A=InA1=A1In
上述和式子启发我们可以这样求逆阵:

考虑一个 n × 2 n n\times 2n n×2n 的矩阵 ( A I n ) (\mathbf A\mathbf {I_n}) (AIn),这个矩阵的前 n n n 列为 A \mathbf A A,后 n n n 列为 I n \mathbf {I_n} In。对矩阵 ( A I n ) (\mathbf A\mathbf {I_n}) (AIn) 进行初等变换把 A \mathbf A A 变成 I n \mathbf {I_n} In,这时右边的 I n \mathbf {I_n} In 就变成了 A − 1 \mathbf A^{-1} A1

2.6 矩阵的秩

定义 2.6.1:在 m × n m\times n m×n 矩阵 A \mathbf A A 中,任取 k k k k k k 列( k ⩽ m , k ⩽ n k\leqslant m,k\leqslant n km,kn),位于这些行列交叉处的 k 2 k^2 k2 个元素,不改变他们在 A \mathbf A A 中所处的位置次序二得的 k k k 阶行列式,称为矩阵 A \mathbf A A k k k 阶子式

定义 2.6.2:设在矩阵 A \mathbf A A 中有一个不等于 0 0 0 r r r 阶子式 D \mathbf D D,且所有 r + 1 r+1 r+1 阶子式(如果存在的话)全等于 0 0 0,则 D \mathbf D D 称为矩阵 A \mathbf A A最高阶非零子式,数 r r r 称为矩阵 A \mathbf A A 的秩,记作 R ( A ) \text R(\mathbf A) R(A)。并规定零矩阵的秩为 0 0 0

3 向量组的线性相关性

3.1 向量组及其线性组合

定义 3.1.1 n n n 个有次序的数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an 所组成的数组称为 n n n 维向量,这 n n n 个数称为该向量的 n n n 个分量,第 i i i 个数 a i a_i ai 称为第 i i i 个分量。

定义3.1.2:给定向量组 A : a 1 , a 2 , ⋯   , a m A:\mathbf a_1,\mathbf a_2,\cdots,\mathbf a_m A:a1,a2,,am,对于任何一组实数 k 1 , k 2 , ⋯   , k m k_1,k_2,\cdots,k_m k1,k2,,km,表达式 ∑ i = 1 m k i A i \sum\limits_{i=1^{m}k_i\mathbf A_i} i=1mkiAi称为向量组 A A A 的一个线性组合, k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn 称为这个线性组合的系数。

3.2 向量组的线性相关性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/980869.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ROS环境搭建

ROS首次搭建环境 注:以下内容都是在已经安装好ros的情况下如何搭建workplace 一、创建工作空间二、创建ROS包三、注意 注:以下内容都是在已经安装好ros的情况下如何搭建workplace 如果没有安装好,建议鱼香ros一步到位:鱼香ROS 我也是装了好久…

centos7操作系统下安装docker,及查看docker进程是否启动

centos7下安装docker,需要用到的yun命令 (yum命令用于添加卸载程序) 1.设置仓库: yum-config-manager \--add-repo \http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 2.安装 Docker Engine-Community yum in…

IO基础知识和练习

一、思维导图 二、练习 1.使用标准IO函数&#xff0c;实现文件的拷贝 #include <head.h> int main(int argc, const char *argv[]) {FILE *pfopen("./one.txt","r");FILE *fpfopen("./two.txt","r");if(pNULL)PRINT_ERROR(&qu…

Linux驱动开发之串口驱动移植

原理图 从上图可以看到RS232的串口接的是UART3&#xff0c;接下来我们需要使能UART3的收发功能。一般串口的驱动程序在内核中都有包含&#xff0c;我们配置使能适配即可。 设备树 复用功能配置 查看6ull如何进行uart3的串口复用配置&#xff1a; 设备树下添加uart3的串口复用…

2.css简介

什么是css&#xff1a; CSS (Cascading Style Sheets&#xff0c;层叠样式表&#xff09;&#xff0c;是一种用来为结构化文档&#xff08;如 HTML 文档或 XML 应用&#xff09;添加样式&#xff08;字体、间距和颜色等&#xff09;的计算机语言&#xff0c;CSS 文件扩展名为 .…

数据可视化02-PCA降维

一、PCA PCA做什么&#xff1f;找坐标系。 目标&#xff1f;二维降到一维&#xff0c;信息保留最多。 怎么样最好&#xff1f;数据分布最分散的方向&#xff08;方差最大&#xff09;&#xff0c;作为主成分&#xff08;坐标轴&#xff09;。 二、怎么找主成分&#xff1f; …

TVbox蜂蜜影视:智能电视观影新选择,简洁界面与强大功能兼具

蜂蜜影视是一款基于猫影视开源项目 CatVodTVJarLoader 开发的智能电视软件&#xff0c;专为追求简洁与高效观影体验的用户设计。该软件从零开始编写&#xff0c;界面清爽&#xff0c;操作流畅&#xff0c;特别适合在智能电视上使用。其最大的亮点在于能够自动跳过失效的播放地址…

【word】电子签名设置、保存和调用

设置电子签名&#xff1a;将扫描版或照片 转化为 word的电子签名 保存电子签名&#xff1a;将上述电子签名 存储到 word资料库中 调用电子签名&#xff1a;在正文中使用 快捷键 快速调用word电子签名 1. 设置电子签名 1.1 手写版签名 1.2 插入到word 插入 - 图片 1.3 着色效…

KVM虚拟机磁盘创建探究-1

在使用 virt-install 命令时&#xff0c;像 --disk path/var/lib/libvirt/images/vm1.qcow2,size20 这样的参数配置会自动创建指定路径和大小的磁盘镜像文件&#xff0c;不需要再单独使用 qemu-img 去创建。 详细解释 当你使用 virt-install 并指定 --disk 参数时&#xff0c…

第三十三:6.3. 【mitt】 任意组件通讯

概述&#xff1a;与消息订阅与发布&#xff08;pubsub&#xff09;功能类似&#xff0c;可以实现任意组件间通信。 // 引入mitt import mitt from "mitt";// 创建emitter const emitter mitt()/*// 绑定事件emitter.on(abc,(value)>{console.log(abc事件被触发,…

Android Stuido 调整左侧文件导航栏文字大小

Android Studio左侧文件导航栏文字大小默认比较小&#xff0c;这里记录下调整的路径&#xff1a; File-->Settings-->Appearance & Behavior-->Appearance-->勾上“Use custom font:” 就可以调整文字大小了&#xff0c;然后确定就好了。

大模型学习笔记------LLM模型开发流程

大模型学习笔记------LLM模型开发流程 1、总体开发流程2、各部分说明3、总结 LLM(Large Language Model)模型&#xff0c;即大型语言模型是大模型中极其重要的分支。它包含了GPT、BERT、Gemini、Qwen、Llama等&#xff0c;这些大模型衍生了相当多的各种改进版本。这些大模型的开…

剑指 Offer II 040. 矩阵中最大的矩形

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20040.%20%E7%9F%A9%E9%98%B5%E4%B8%AD%E6%9C%80%E5%A4%A7%E7%9A%84%E7%9F%A9%E5%BD%A2/README.md 剑指 Offer II 040. 矩阵中最大的矩形 题目描述 给定一个由 …

【含文档+PPT+源码】基于SpringBoot+Vue医药知识学习与分享平台的设计与实现

项目介绍 本课程演示的是一款 基于SpringBootVue医药知识学习与分享平台的设计与实现&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 1.包含&#xff1a;项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部署运…

基于提示驱动的潜在领域泛化的医学图像分类方法(Python实现代码和数据分析)

摘要 医学图像分析中的深度学习模型易受数据集伪影偏差、相机差异、成像设备差异等导致的分布偏移影响&#xff0c;导致在真实临床环境中诊断不可靠。领域泛化&#xff08;Domain Generalization, DG&#xff09;方法旨在通过多领域训练提升模型在未知领域的性能&#xff0c;但…

【监督学习】支持向量机步骤及matlab实现

支持向量机 &#xff08;四&#xff09;支持向量机1.算法步骤2. MATLAB 实现参考资料 &#xff08;四&#xff09;支持向量机 支持向量机&#xff08;Support Vector Machine, SVM&#xff09;是一种用于分类、回归分析以及异常检测的监督学习模型。SVM特别擅长处理高维空间的…

数据集/API 笔记:湿球黑球温度(WBGT)观测数据

data.gov.sg WBGT是一个综合指标&#xff0c;考虑了气温、湿度、风速和太阳辐射&#xff0c;与气温不同。 报告的WBGT是过去15分钟内的平均值&#xff0c;每15分钟更新一次。 API 调用 curl --request GET \--url https://api-open.data.gov.sg/v2/real-time/api/weather …

基于 DataEase 的企业数据分析实践

1. 前言 在上一篇《基于 Selenium 实现的必应企业信息抓取工具》中&#xff0c;成功实现了对企业信息的批量抓取与导出。接下来&#xff0c;将对这些数据进行深入分析&#xff0c;包括地区分布、所属行业、规模大小等维度。其中&#xff0c;最直接的需求是统计每个省份的企业数…

教资信息技术之数据库技术

一、概述 1.1 基本概念 数据&#xff1a;描述事物的符号记录称为数据 数据库&#xff1a;长期存储在计算机内、有组织的、可共享的大量数据的集合。 数据库管理系统&#xff1a;位于用户和操作系统之间的一层数据管理软件 数据库系统&#xff1a;数据库系统是由数据库、数据…

JavaAPI(反射)

反射机制简介 获取一个类的实例对象&#xff0c;一般用new关键字来调用构造器获取实例&#xff0c;但是使用new有优点也有缺点。 优点&#xff1a; 性能高&#xff0c;JVM已经对这种调用进行了优化。不需要额外的权限检查、直接调用构造器获取实例、简单方便 缺点&#xff…