Python实现GO鹅优化算法优化BP神经网络回归模型项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。

1.项目背景

传统BP神经网络的局限性:BP(Back Propagation)神经网络作为一种经典的机器学习方法,在解决非线性回归问题中表现出强大的建模能力。然而,传统BP神经网络在实际应用中存在一些显著的不足之处,例如容易陷入局部最优解、对初始权值和阈值敏感以及收敛速度较慢等问题。这些问题限制了其在复杂数据环境中的应用效果,因此需要引入新的优化方法来改进BP神经网络的性能。

GO鹅优化算法的优势:GO鹅优化算法是一种基于鹅群行为的新型群体智能优化算法,它模拟了鹅群在觅食和迁徙过程中的协作机制,具有较强的全局搜索能力和快速收敛的特点。相比传统的优化算法,GO鹅优化算法能够更有效地避免局部最优解,并通过动态调整个体行为实现探索与开发的平衡。将GO鹅优化算法应用于BP神经网络的权值和阈值初始化,可以显著提升模型的训练效率和预测精度。

项目目标与意义:本项目旨在结合Python编程语言实现GO鹅优化算法优化BP神经网络回归模型,以解决传统BP神经网络存在的问题。通过将GO鹅优化算法与BP神经网络相结合,不仅可以克服BP神经网络的局限性,还能为实际回归问题提供一种高效、可靠的解决方案。项目完成后,我们将验证该模型在实际数据集上的表现,并将其应用于房价预测、股票价格预测等领域,为相关领域的决策提供科学依据和技术支持。

本项目通过Python实现GO鹅优化算法优化BP神经网络回归模型项目实战。              

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下: 

6.构建GO鹅优化算法优化BP神经网络回归模型   

主要使用通过GO鹅优化算法优化BP神经网络回归模型,用于目标回归。        

6.1 GO鹅优化算法寻找最优参数值

最优参数值: 

6.2 最优参数构建模型 

编号

模型名称

参数

1

BP神经网络回归模型     

units=best_units

2

optimizer=tf.keras.optimizers.Adam(best_learning_rate)

3

epochs=best_epochs

6.3 模型摘要信息

6.4 模型训练集测试集损失曲线图

7.模型评估

7.1评估指标及结果  

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

模型名称

指标名称

指标值

测试集

BP神经网络回归模型    

R方

1.0

均方误差

0.4479

解释方差分 

1.0

绝对误差

0.4741 

从上表可以看出,R方分值为1.0,说明模型效果较好。      

关键代码如下:      

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。        

8.结论与展望

综上所述,本文采用了Python实现GO鹅优化算法优化BP神经网络回归算法来构建回归模型,最终证明了我们提出的模型效果较好。此模型可用于日常产品的预测。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/979811.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1.忆往昔—Java发展史

在编程世界的远古时代,C语言和C统治着大地,但它们复杂且难以驾驭。1995年5月23日,Java 1.0正式发布,它像一把神奇的钥匙,打开了“一次编写,到处运行”的大门。 早在1991年Java就已经初见雏形,不…

Vue+Elementui 全局配置el-table表格列宽可拖拽

1、需求分析 如何让表格列宽可以拖动 elementui的el-table如果想要列宽可以拖动的话 有一个属性叫 border 在模板里添加这个属性即可实现 但是系统里面的表格我不可能一个一个去添加border太麻烦 如果能够全局配置岂不是非常省时间吗 我们在main.js里面通过全局混入的方式来…

“Web渗透测试实战指南|BWAPP靶场全关卡通关教程(含高中低/不可能级别)从SQL注入到XSS攻击手把手教学|网络安全工程师必备技能“ 内容较长点赞收藏哟

目录 Low级别 ---A1 - Injection{注入}-- HTML Injection - Reflected (GET) HTML Injection - Reflected (POST) HTML Injection - Reflected (URL) HTML Injection - Stored (Blog) iFrame Injection LDAP Connection Settings Mail Header Injection (SMTP) OS Co…

释放 Cursor 的全部潜能:快速生成智能 Cursor Rules

释放 Cursor 的全部潜能:使用 PromptCoder 从 package.json 快速生成智能 Cursor Rules 我们将深入探讨如何利用您项目中的 package.json 文件,轻松生成 Cursor Rules,并通过 PromptCoder 这个强大的工具,快速创建高质量的 curso…

DeepSeek开源周-汇总

当 ChatGPT、Claude 这些闭源大模型严防死守技术秘密时,DeepSeek 却反其道而行,选择了全面开源,为整个 AI 生态注入新的活力。 在过去短短一周内,DeepSeek 连续在 GitHub 开源了 8 个核心技术项目,完成了一次震撼业界…

02内存映射与bmp解码

一、mmap 内存映射 内存映射的作用是把硬件设备的地址,映射到应用层的内存空间,这样用户就可以跨越系统层访问linux的硬件设备。 1、man 2 mmap 查看映射函数接口 NAMEmmap, munmap - map or unmap files or devices into memory映射 解除…

I2C驱动(九) -- i2c_adapter控制器驱动框架编写

相关文章 I2C驱动(一) – I2C协议 I2C驱动(二) – SMBus协议 I2C驱动(三) – 驱动中的几个重要结构 I2C驱动(四) – I2C-Tools介绍 I2C驱动(五) – 通用驱动i2c-dev.c分析 I2C驱动(六) – I2C驱动程序模型 I2C驱动(七) – 编写I2C设备驱动之i2c_driver I2C驱动(八) – 编写I2C…

分布式系统核心基石:CAP定理、BASE理论与一致性算法深度解析

一、CAP定理:分布式系统的设计边界 1.1 核心定义与经典三角 CAP定理(Brewers Theorem)指出,在分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性&a…

3 算法1-4 过河卒

题目描述 棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。 棋盘用坐标表示&#xff…

AutoMQ:无需 Cruise Control 实现 Kafka 的自动分区再平衡

导读:AutoMQ是一款贯彻云优先理念来设计的 Kafka 替代产品。AutoMQ 创新地对 Apache Kafka 的存储层进行了基于云的重新设计,在 100% 兼容 Kafka 的基础上通过将持久性分离至 EBS 和 S3 带来了 10x 的成本降低以及 100x 的弹性能力提升,并且相…

论文阅读之基于Syn2Real域的侧扫声纳类水雷目标探测

摘要 由于现实世界数据的稀缺性,基于深度学习的水下水雷探测受到了限制。这种稀缺性导致过拟合,即模型在训练数据上表现良好,但在未见数据上表现不佳。本文提出了一种使用扩散模型的Syn2Real (Synthetic to Real)域泛…

如何使用Docker搭建哪吒监控面板程序

哪吒监控(Nezha Monitoring)是一款自托管、轻量级的服务器和网站监控及运维工具,旨在为用户提供实时性能监控、故障告警及自动化运维能力。 文档地址:https://nezha.wiki/ 本章教程,使用Docker方式安装哪吒监控面板,在此之前,你需要提前安装好Docker. 我当前使用的操作系…

微服务学习(1):RabbitMQ的安装与简单应用

目录 RabbitMQ是什么 为什么要使用RabbitMQ RabbitMQ的安装 RabbitMQ架构及其对应概念 队列的主要作用 交换机的主要作用 RabbitMQ的应用 通过控制面板操作(实现收发消息) RabbitMQ是什么 RabbitMQ是一个开源的消息队列软件(消息代理…

综合实验处理表格

新建excel表格,输入信息,另存为csv文件。 利用notepad打开csv文件,可以观察格式 目标:通过编程处理文件,实现对数据的处理,成绩求和以及评价 对数据逐行处理,读一行,处理一行&#…

【leetcode hot 100 560】和为K的子数组

解法一&#xff1a;用左右指针寻找字串&#xff0c;如果和>k&#xff0c;则减少一个数&#xff08;left&#xff09;&#xff1b;如果和<k&#xff0c;则加上一个数&#xff08;right&#xff09;。 class Solution {public int subarraySum(int[] nums, int k) {int nu…

STM32CubeMx DRV8833驱动

一、DRV8833驱动原理 ​ STBY口接单片机的IO口&#xff0c;STBY置0电机全部停止&#xff0c;置1才能工作。STBY置1后通过AIN1、AIN2、BIN1、BIN2 来控制正反转。 AIN1AIN2电机状态00停止1speed反转speed1正转11停止 其中A端&#xff08;AIN1与AIN2&#xff09;只能控制AO1与…

Android 图片压缩详解

在 Android 开发中,图片压缩是一个重要的优化手段,旨在提升用户体验、减少网络传输量以及降低存储空间占用。以下是几种主流的图片压缩方法,结合原理、使用场景和优缺点进行详细解析。 效果演示 直接先给大家对比几种图片压缩的效果 质量压缩 质量压缩:根据传递进去的质…

JavaWeb后端基础(3)

原打算把Mysql操作数据库的一些知识写进去&#xff0c;但是感觉没必要&#xff0c;要是现在会的都是简单的增删改查&#xff0c;所以&#xff0c;这一篇&#xff0c;我直接从java操作数据库开始写&#xff0c;所以这一篇大致就是记一下JDBC、MyBatis、以及SpringBoot的配置文件…

ArcGIS Pro技巧实战:高效矢量化天地图地表覆盖图

在地理信息系统&#xff08;GIS&#xff09;领域&#xff0c;地表覆盖图的矢量化是一项至关重要的任务。天地图作为中国国家级的地理信息服务平台&#xff0c;提供了丰富且详尽的地表覆盖数据。然而&#xff0c;这些数据通常以栅格格式存在&#xff0c;不利于进行空间分析和数据…

TP-LINK路由器如何设置网段、网关和DHCP服务

目标 ①将路由器的网段由192.168.1.XXX改为192.168.5.XXX ②确认DHCP是启用的&#xff0c;并将DHCP的IP池的范围设置为排除自己要手动指定的IP地址&#xff0c;避免IP冲突。 01-复位路由器 路由器按住复位键10秒以上进行重置操作 02-进入路由器管理界面 电脑连接到路由器&…