context.WithCancel()的使用

WithCancel可以将一个Context包装为cancelCtx,并提供一个取消函数,调用这个取消函数,可以Cancel对应的Context

Go语言context包-cancelCtx[1]


疑问


context.WithCancel()取消机制的理解[2]

父母5s钟后出门,倒计时,父母在时要学习,父母一走就可以玩

package main

import (
 "context"
 "fmt"
 "time"
)

func dosomething(ctx context.Context) {
 for {
  select {
  case <-ctx.Done():
   fmt.Println("playing")
   return
  default:
   fmt.Println("I am working!")
   time.Sleep(time.Second)
  }
 }
}

func main() {
 ctx, cancelFunc := context.WithCancel(context.Background())
 go func() {
  time.Sleep(5 * time.Second)
  cancelFunc()
 }()
 dosomething(ctx)
}
alt

为什么调用cancelFunc就能从ctx.Done()里取得返回值? 进而取消对应的Context?


复习一下channel的一个特性


从一个已经关闭的channel里可以一直获取对应的零值

alt

WithCancel代码分析


pkg.go.dev/context#WithCancel:[3]

// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.

//WithCancel 返回具有新 Done 通道的 parent 副本。 返回的上下文的完成通道在调用返回的取消函数或父上下文的完成通道关闭时关闭,以先发生者为准。

//取消此上下文会释放与其关联的资源,因此代码应在此上下文中运行的操作完成后立即调用取消。

func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
 if parent == nil {
  panic("cannot create context from nil parent")
 }
 c := newCancelCtx(parent)   // 将parent作为父节点context 生成一个新的子节点

 //获得“父Ctx路径”中可被取消的Ctx
 //将child canceler加入该父Ctx的map中
 propagateCancel(parent, &c)
 return &c, func() { c.cancel(true, Canceled) }
}

WithCancel最后返回 子上下文和一个cancelFunc函数,而cancelFunc函数里调用了cancelCtx这个结构体的方法cancel

(代码基于go 1.16; 1.17有所改动)

// A cancelCtx can be canceled. When canceled, it also cancels any children
// that implement canceler.
type cancelCtx struct {
 Context

 mu       sync.Mutex            // protects following fields
 done     chan struct{}         // created lazily, closed by first cancel call done是一个channel,用来 传递关闭信号
 children map[canceler]struct{} // set to nil by the first cancel call  children是一个map,存储了当前context节点下的子节点
 err      error                 // set to non-nil by the first cancel call  err用于存储错误信息 表示任务结束的原因
}

在cancelCtx这个结构体中,字段done是一个传递空结构体类型的channel,用来在上下文取消时关闭这个通道,err就是在上下文被取消时告诉用户这个上下文取消了,可以用ctx.Err()来获取信息

canceler是一个实现接口,用于Ctx的终止。实现该接口的Context有cancelCtx和timerCtx,而emptyCtx和valueCtx没有实现该接口。

alt
// A canceler is a context type that can be canceled directly. The
// implementations are *cancelCtx and *timerCtx.
type canceler interface {
 cancel(removeFromParent bool, err error)
 Done() <-chan struct{}
}

// closedchan is a reusable closed channel.
var closedchan = make(chan struct{})

func init() {
 close(closedchan)
}

// cancel closes c.done, cancels each of c's children, and, if
// removeFromParent is true, removes c from its parent's children.
/**
* 1、cancel(...)当前Ctx的子节点
* 2、从父节点中移除该Ctx
**/

func (c *cancelCtx) cancel(removeFromParent bool, err error) {
 if err == nil {
  panic("context: internal error: missing cancel error")
 }
 c.mu.Lock()
 if c.err != nil {
  c.mu.Unlock()
  return // already canceled
 }
 // 设置取消原因
 c.err = err

 //  设置一个关闭的channel或者将done channel关闭,用以发送关闭信号
 if c.done == nil {
  c.done = closedchan
 } else {
  close(c.done) // 注意这一步
 }

  // 将子节点context依次取消
 for child := range c.children {
  // NOTE: acquiring the child's lock while holding parent's lock.
  child.cancel(false, err)
 }
 c.children = nil
 c.mu.Unlock()

 if removeFromParent {
   // 将当前context节点从父节点上移除
  removeChild(c.Context, c)
 }
}

对于cancel函数,其取消了基于该上下文的所有子上下文以及把自身从父上下文中取消

对于更多removeFromParent代码分析,和其他Context的使用,强烈建议阅读 深入理解Golang之Context(可用于实现超时机制)[4]


 // Done is provided for use in select statements:
 //
 //  // Stream generates values with DoSomething and sends them to out
 //  // until DoSomething returns an error or ctx.Done is closed.
 //  func Stream(ctx context.Context, out chan<- Value) error {
 //   for {
 //    v, err := DoSomething(ctx)
 //    if err != nil {
 //     return err
 //    }
 //    select {
 //    case <-ctx.Done():
 //     return ctx.Err()
 //    case out <- v:
 //    }
 //   }
 //  }
 //
 // See https://blog.golang.org/pipelines for more examples of how to use
 // a Done channel for cancellation.
 Done() <-chan struct{}

 // If Done is not yet closed, Err returns nil.
 // If Done is closed, Err returns a non-nil error explaining why:
 // Canceled if the context was canceled
 // or DeadlineExceeded if the context's deadline passed.
 // After Err returns a non-nil error, successive calls to Err return the same error.
 Err() error

当调用cancelFunc()时,会有一步close(d)的操作,

ctx.Done 获取一个只读的 channel,类型为结构体。可用于监听当前 channel 是否已经被关闭。

Done()用来监听cancel操作(对于cancelCtx)或超时操作(对于timerCtx),当执行取消操作或超时时,c.done会被close,这样就能从一个已经关闭的channel里一直获取对应的零值<-ctx.Done便不会再阻塞

(代码基于go 1.16; 1.17有所改动)

func (c *cancelCtx) Done() <-chan struct{} {
 c.mu.Lock()
 if c.done == nil {
  c.done = make(chan struct{})
 }
 d := c.done
 c.mu.Unlock()
 return d
}

func (c *cancelCtx) Err() error {
 c.mu.Lock()
 err := c.err
 c.mu.Unlock()
 return err
}

总结一下:使用context.WithCancel时,除了返回一个新的context.Context(上下文),还会返回一个cancelFunc。 在需要取消该context.Context时,就调用这个cancelFunc,之后当前上下文及其子上下文都会被取消,所有的 Goroutine 都会同步收到这一取消信号

至于cancelFunc是如何做到的?

在用户代码,for循环里select不断尝试从 <-ctx.Done()里读取出内容,但此时并没有任何给 c.done这个channel写入数据的操作,(类似c.done <- struct{}{}),故而在for循环里每次select时,这个case都不满足条件,一直阻塞着。每次都执行default代码段

而在执行cancelFunc时, 在func (c *cancelCtx) cancel(removeFromParent bool, err error)里面,会有一个close(c.done)的操作。而从一个已经关闭的channel里可以一直获取对应的零值,即 select可以命中,进入case res := <-ctx.Done():代码段


可用如下代码验证:

package main

import (
 "context"
 "fmt"
 "time"
)

func dosomething(ctx context.Context) {

 var cuiChan = make(chan struct{})

 go func() {
  cuiChan <- struct{}{}
 }()

 //close(cuiChan)

 for {
  select {
  case res := <-ctx.Done():
   fmt.Println("res:", res)
   return
  case res2 := <-cuiChan:
   fmt.Println("res2:", res2)
  default:
   fmt.Println("I am working!")
   time.Sleep(time.Second)
  }
 }
}

func main() {

 test()
 ctx, cancelFunc := context.WithCancel(context.Background())
 go func() {
  time.Sleep(5 * time.Second)
  cancelFunc()
 }()

 dosomething(ctx)
}

func test() {

 var testChan = make(chan struct{})

 if testChan == nil {
  fmt.Println("make(chan struct{})后为nil")
 } else {
  fmt.Println("make(chan struct{})后不为nil!!!")
 }

}

输出:

make(chan struct{})后不为nil!!!
I am working!
res2: {}
I am working!
I am working!
I am working!
I am working!
res: {}

而如果 不向没有缓存的cuiChan写入数据,直接close,即

package main

import (
 "context"
 "fmt"
 "time"
)

func dosomething(ctx context.Context) {

 var cuiChan = make(chan struct{})

 //go func() {
 // cuiChan <- struct{}{}
 //}()

 close(cuiChan)

 for {
  select {
  case res := <-ctx.Done():
   fmt.Println("res:", res)
   return
  case res2 := <-cuiChan:
   fmt.Println("res2:", res2)
  default:
   fmt.Println("I am working!")
   time.Sleep(time.Second)
  }
 }
}

func main() {

 test()
 ctx, cancelFunc := context.WithCancel(context.Background())
 go func() {
  time.Sleep(5 * time.Second)
  cancelFunc()
 }()

 dosomething(ctx)
}

func test() {

 var testChan = make(chan struct{})

 if testChan == nil {
  fmt.Println("make(chan struct{})后为nil")
 } else {
  fmt.Println("make(chan struct{})后不为nil!!!")
 }

}

则会一直命中case 2

res2: {}
res2: {}
res2: {}
res2: {}
res2: {}
res2: {}
res2: {}
...
//一直打印下去

更多参考:

深入理解Golang之Context(可用于实现超时机制)[5]

回答我,停止 Goroutine 有几种方法?

golang context的done和cancel的理解 for循环channel实现context.Done()阻塞输出[6]




更多关于channel阻塞与close的代码


package main

import (
 "fmt"
 "time"
)

func main() {
 ch := make(chan string0)
 go func() {
  for {
   fmt.Println("----开始----")
   v, ok := <-ch
   fmt.Println("v,ok", v, ok)
   if !ok {
    fmt.Println("结束")
    return
   }
   //fmt.Println(v)
  }
 }()

 fmt.Println("<-ch一直没有东西写进去,会一直阻塞着,直到3秒钟后")
 fmt.Println()
 fmt.Println()
 time.Sleep(3 * time.Second)

 ch <- "向ch这个channel写入第一条数据..."
 ch <- "向ch这个channel写入第二条数据!!!"

 close(ch) // 当channel被close后, v,ok 中的ok就会变为false

 time.Sleep(10 * time.Second)
}

输出为:

----开始----
<-ch一直没有东西写进去,会一直阻塞着,直到3秒钟后


v,ok 向ch这个channel写入第一条数据... true
----开始----
v,ok 向ch这个channel写入第二条数据!!! true
----开始----
v,ok  false
结束


package main

import (
 "fmt"
 "sync/atomic"
 "time"
)

func main() {
 ch := make(chan string0)
 done := make(chan struct{})

 go func() {
  var i int32

  for {
   atomic.AddInt32(&i, 1)
   select {
   case ch <- fmt.Sprintf("%s%d%s""第", i, "次向通道中写入数据"):

   case <-done:
    close(ch)
    return
   }

   // select随机选择满足条件的case,并不按顺序,所以打印出的结果,在30几次波动
   time.Sleep(100 * time.Millisecond)
  }
 }()

 go func() {
  time.Sleep(3 * time.Second)
  done <- struct{}{}
 }()

 for i := range ch {
  fmt.Println("接收到的值: ", i)
 }

 fmt.Println("结束")
}

输出为:

接收到的值:  第1次向通道中写入数据
接收到的值:  第2次向通道中写入数据
接收到的值:  第3次向通道中写入数据
接收到的值:  第4次向通道中写入数据
接收到的值:  第5次向通道中写入数据
接收到的值:  第6次向通道中写入数据
接收到的值:  第7次向通道中写入数据
接收到的值:  第8次向通道中写入数据
接收到的值:  第9次向通道中写入数据
接收到的值:  第10次向通道中写入数据
接收到的值:  第11次向通道中写入数据
接收到的值:  第12次向通道中写入数据
接收到的值:  第13次向通道中写入数据
接收到的值:  第14次向通道中写入数据
接收到的值:  第15次向通道中写入数据
接收到的值:  第16次向通道中写入数据
接收到的值:  第17次向通道中写入数据
接收到的值:  第18次向通道中写入数据
接收到的值:  第19次向通道中写入数据
接收到的值:  第20次向通道中写入数据
接收到的值:  第21次向通道中写入数据
接收到的值:  第22次向通道中写入数据
接收到的值:  第23次向通道中写入数据
接收到的值:  第24次向通道中写入数据
接收到的值:  第25次向通道中写入数据
接收到的值:  第26次向通道中写入数据
接收到的值:  第27次向通道中写入数据
接收到的值:  第28次向通道中写入数据
接收到的值:  第29次向通道中写入数据
接收到的值:  第30次向通道中写入数据
接收到的值:  第31次向通道中写入数据
结束

每次执行,打印出的结果,在30几次波动

参考资料

[1]

Go语言context包-cancelCtx: https://dashen.tech/2019/06/23/Go%E8%AF%AD%E8%A8%80context%E5%8C%85/#cancelCtx

[2]

context.WithCancel()取消机制的理解: https://blog.csdn.net/weixin_42216109/article/details/123694275

[3]

pkg.go.dev/context#WithCancel:: https://pkg.go.dev/context#WithCancel

[4]

深入理解Golang之Context(可用于实现超时机制): https://blog.csdn.net/qq_25821689/article/details/105850717

[5]

深入理解Golang之Context(可用于实现超时机制): https://blog.csdn.net/qq_25821689/article/details/105850717

[6]

golang context的done和cancel的理解 for循环channel实现context.Done()阻塞输出: https://blog.csdn.net/nakeer/article/details/120897267

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/97980.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究&#xff0c;让大家理解特征提取的全过程。 要理解卷积神经网络中图像特征提取的全过程&#xff0c;我们可以将其比喻为人脑对视觉信息的处理过程。就像…

qt day

#include "widget.h" #include "ui_widget.h" void Widget::my_slot() {} Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setWindowIcon(QIcon(":/wodepeizhenshi.png"));//設置窗口的…

数据结构(Java实现)-二叉树(上)

树型结构 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 有一个特殊的结点&#xff0c;称为根结点&…

docker高级(DockerFile解析)

1、构建三步骤 编写Dockerfile文件 docker build命令构建镜像 docker run依镜像运行容器实例 2、DockerFile构建过程解析 Dockerfile内容基础知识 1&#xff1a;每条保留字指令都必须为大写字母且后面要跟随至少一个参数 2&#xff1a;指令按照从上到下&#xff0c;顺序执行…

编程题四大算法思想(二)——回溯法:N皇后问题、子集和问题、地图填色问题、迷宫问题

文章目录 回溯法迷宫游戏 N皇后问题基本概念解空间4后问题的解空间 可行解和最优解回溯法回溯法术语回溯法的关键问题回溯法的基本思想4后问题的约束条件n后问题生成问题状态的基本方法 子集和问题一个朴素的求解方法回溯回溯法的剪枝技术 地图填色问题 回溯法 迷宫游戏 深度优…

springcloud-gateway简述

Spring Cloud Gateway 是一个用于构建 API 网关的项目&#xff0c;它是 Spring Cloud 生态系统中的一部分&#xff0c;旨在为微服务架构提供动态路由、负载均衡、安全性和监控等功能。 网关工程对应pom文件 <?xml version"1.0" encoding"UTF-8"?>…

HTTP状态码504(Gateway Timeout)报错原因分析和解决办法

文章目录 504报错原因分析一、用户角度1. 代理服务器问题2. 网络问题 二、网站管理员角度1. 服务器负载过重2. 网关配置问题3. 目标服务器响应慢4. IIS/nginx/apache服务关闭5. 维护或故障6. 数据库的慢处理也会导致504 用户角度可以采取哪些措施解决504错误1. 刷新页面2. 检查…

SQLI-labs-第一关

目录 知识点&#xff1a;单引号字符型注入 1、根据提示&#xff0c;为get注入&#xff0c;在url中输入内容​编辑 2、判断注入点 3、判断目前该表的字段数 4、判断回显位置 5、爆库名 6、爆表名 7、爆字段名 8、爆值 知识点&#xff1a;单引号字符型注入 思路&#xff1a;…

matlab使用教程(26)—常微分方程的求解

1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题&#xff0c;ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…

FI 数据源(AP) 及 增量逻辑

AP 一般AP里要分析行项目数据&#xff0c;交易数据&#xff0c;历史付款信息。 还有一些供应商主数据。 基础的抽取数据源就是下面几个&#xff1a; 0FI_AP_4: Vendors: Line Items with Delta Extrcation0FI_AP_6: Vendor Sales Figures via Delta Extraction0FI_AP_7: Ve…

小白到运维工程师自学之路 第八十集 (Jumpserver堡垒机管理)2

5、登录普通用户进行测试 这里的操作和在linux系统中的终端操作一样 在Xshell中登录 创建一个普通文件 在web终端中查看 五、审计台 在审计台中可以看到服务器的各种详细操作 在这里可以看到哪个用户在哪个时间对服务器具体使用了什么命令&#xff0c;还可以看到录频回放。 …

windows使用技巧

1、windows 快捷键 winM&#xff1a;所有页面最小化 winD&#xff1a;快速到达桌面 winE&#xff1a;打开我的电脑 winV&#xff1a;剪切板记录 win&#xff0c;&#xff1a;查看桌面&#xff08;松开恢复原样&#xff09; winW&#xff1a;全屏截屏 winR&#xff1a;快速运行…

实现不同局域网文件共享的解决方案:使用Python自带HTTP服务和端口映射

文章目录 1. 前言2. 本地文件服务器搭建2.1 python的安装和设置2.2 cpolar的安装和注册 3. 本地文件服务器的发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 数据共享作为和连接作为互联网的基础应用&#xff0c;不仅在商业和办公场景有广泛的应用…

交换机端口安全

文章目录 一、802.1X认证1. 定义和起源2. 认证方式本地认证远程集中认证 3. 端口接入控制方式基于端口认证基于MAC地址认证 二、端口隔离技术1. 隔离组2. 隔离原理3. 应用场景 首先可以看下思维导图&#xff0c;以便更好的理解接下来的内容。 一、802.1X认证 1. 定义和起源 8…

Vector<T> 动态数组(模板语法)

C数据结构与算法 目录 本文前驱课程 1 C自学精简教程 目录(必读) 2 动态数组 Vector&#xff08;难度1&#xff09; 其中&#xff0c;2 是 1 中的一个作业。2 中详细讲解了动态数组实现的基本原理。 本文目标 1 学会写基本的C类模板语法&#xff1b; 2 为以后熟练使用 S…

深度学习8:详解生成对抗网络原理

目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数&#xff01; 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 …

Delphi 11.3 FMX 多设备平台中使用 TGrid 实现类似 TDBGrid 的效果

Delphi Firemonkey 中 TDBGrid 这个控件已经没有了。如何实现类似这个效果呢。其实可以用TGrid 来实现。以下用 11.3 来讲解。 查询里面用到的 connection 和 query 等控件那些一般的数据库用法&#xff0c;就不做过多描述了。请参考其他资料。 方法一.通过界面配置来实现 在…

DWA算法学习

一、DWA概念  DWA(动态窗口法)属于局部路径规划方法&#xff0c;为ROS中主要采用的方法。其原理主要是在速度空间&#xff08;v,w&#xff09;中采样多组速度&#xff0c;并模拟这些速度在一定时间内的运动轨迹&#xff0c;再通过一个评价函数对这些轨迹打分&#xff0c;最优的…

【conda install】网络慢导致报错CondaHTTPError: HTTP 000 CONNECTION FAILED for url

⭐⭐问题&#xff1a; 部署安装环境经常会出现由于网络慢问题&#xff0c;导致conda安装不了库&#xff0c;报错如下&#xff1a; Solving environment: failedCondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/…

Python钢筋混凝土结构计算.pdf-已知弯矩确定混凝土梁截面尺寸

计算原理 确定混凝土梁截面的合理尺寸通常需要考虑弯矩、受力要求和约束条件等多个因素。以下是一种常见的计算公式&#xff0c;用于基于已知弯矩确定混凝土梁截面的合理尺寸&#xff1a; 请注意&#xff0c;以上公式仅提供了一种常见的计算方法&#xff0c;并且具体的规范和设…