opencv:距离变换 cv2.distanceTransform

函数 cv2.distanceTransform() 用于计算图像中每一个非零点像素与其最近的零点像素之间的距离(Distance Transform, DT算法),输出的是保存每一个非零点与最近零点的距离信息;图像上越亮的点,代表了离零点的距离越远。
distanceTransformWithLabels 可以返回距离图和标签图。
distance, labels = cv.distanceTransformWithLabels(opn, cv.DIST_L1, 3, labelType=cv.DIST_LABEL_CCOMP)

cv2.distanceTransform(
	src, 					# 二通道二值图,uint8 格式
	distanceType, 			# 距离类型
	maskSize[, 				# 距离变换掩码的大小
	dst[, 
	dstType]]				# 要生成的标签数组的类型
	) -> dst

参数
src:这是输入的8位单通道(通常是二值化的)源图像。每个像素值要么是0(背景),要么是255(前景),函数会计算每个前景像素到最近背景像素的距离。

dst:这是输出图像,包含计算出的距离信息。它是一个8位或32位浮点型的单通道图像,与src图像具有相同的尺寸。每个像素值表示该像素到最近的背景像素的距离。

labels:这是输出的二维标签数组(离散的Voronoi图)。它具有CV_32SC1(32位整数)类型,并且与src图像具有相同的尺寸。每个像素值代表了最近的背景像素或背景像素组成的连通组件的标签。

distanceType:这指定了距离类型,它定义了计算距离的方式,具体包括:

  • DIST_L1:城市街区距离,也称为曼哈顿距离。
  • DIST_L2:欧几里得距离。
  • DIST_C:棋盘距离,也称为无限范数距离。

maskSize:这是距离变换所使用的掩模大小。它定义了计算距离时考虑的邻域大小。DIST_MASK_PRECISE在此变体中不受支持。对于DIST_L1或DIST_C距离类型,参数被强制为3,因为3×3的掩模可以给出与5×5或任何更大窗口相同的距离结果。

labelType:这定义了要构建的标签数组的类型,具体包括:

  • DIST_LABEL_CCOMP:每个连通组件的背景像素都被赋予一个唯一的标签。
  • DIST_LABEL_PIXEL:每个背景像素都被赋予一个唯一的标签。

通常,为了快速、粗略的距离估算DIST_L2,使用3×3掩模。为了更精确的距离估算DIST_L2,使用5×5掩模或精确算法。需要注意的是,无论是精确算法还是近似算法,它们的时间复杂度都是与像素数量线性的。

在这里插入图片描述
在这里插入图片描述

distanceTransformWithLabels

import cv2 as cv

# 假设 opn 是经过预处理(如形态学开运算)的二值图像
distance, labels = cv.distanceTransformWithLabels(
    opn, 
    distanceType=cv.DIST_L1,
    maskSize=3,
    labelType=cv.DIST_LABEL_CCOMP
)

在这里插入图片描述在这里插入图片描述

经典应用

提取硬币前景

path = "..." # 补充图片路径
img = cv.imread(path, cv.IMREAD_GRAYSCALE)
_ret, img2 = cv.threshold(img, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)
kernel = np.ones((3, 3), np.uint8)
opn = cv.morphologyEx(img2, cv.MORPH_OPEN, kernel)
distance = cv.distanceTransform(opn, cv.DIST_L2, 3)
_ret, result = cv.threshold(distance, 0.05 * distance.max(), 255, cv.THRESH_BINARY)


plt.subplot(221), plt.imshow(img, cmap='gray'), plt.title('org'), plt.axis('off')
plt.subplot(222), plt.imshow(opn, cmap='gray'), plt.title('opn'), plt.axis('off')
plt.subplot(223), plt.imshow(distance, cmap='gray'), plt.title('distance'), plt.axis('off')
plt.subplot(224), plt.imshow(result, cmap='gray'), plt.title('result'), plt.axis('off')

效果类似于下图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/978764.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ArcGIS Pro中打造精美高程渲染图的全面指南

一、引言 高程渲染图是地理信息系统(GIS)中用于展示地形地貌的重要工具。一张精美的高程渲染图,不仅能够清晰地呈现地形的起伏变化,还能增强视觉表现力,使得数据更加生动、直观。ArcGIS Pro作为一款强大的GIS软件&…

[Python学习日记-84] 进程理论

[Python学习日记-84] 进程理论 简介 进程的概念 并发与并行的区别 进程并发的实现 简介 进程理论是计算机科学中一种重要的概念,用来描述操作系统中执行的程序实例。在操作系统中,每个程序的执行被称为一个进程。进程理论研究进程的创建、调度、通信…

信息系统的安全防护

文章目录 引言**1. 物理安全****2. 网络安全****3. 数据安全****4. 身份认证与访问控制****5. 应用安全****6. 日志与监控****7. 人员与管理制度****8. 其他安全措施****9. 安全防护框架**引言 从技术、管理和人员三个方面综合考虑,构建多层次、多维度的安全防护体系。 信息…

分布式主键生成服务

目录 一、使用线程安全的类——AtomicInteger或者AtomicLong 二、主键生成最简单写法(不推荐) 三、主键生成方法一:Long型id生成——雪花算法 四、主键生成方法二:流水号 (一)流水号概述 (二)添加配置 1.pom.xml 2.application.properties 3.创…

Linux 环境“从零”部署 MongoDB 6.0:mongosh 安装与数据操作全攻略

前提 完成linux平台部署MongoDB【部署教程】且完成mongosh的安装 由于本人使用的是6.0版本的MongoDB,新版本 MongoDB(尤其是 6.0 及以上版本)已经不再默认捆绑传统的 mongo shell,而改用新的 MongoDB Shell(mongosh&am…

使用Docker将ros1自定义消息通过rosjava_bootstrap生成jar包

文章目录 预准备环境rosjava_bootstrap坏消息好消息 环境安装docker安装rosjava_bootstrap仓库rosjava_center仓库修改rosjava_bootstrap代码拉取docker镜像放置自己的自定义消息 启动docker编译 预准备环境 rosjava_bootstrap rosjava_bootstrap是将自定义的ROS消息生成java…

RNN,LSTM,GRU三种循环网络的对比

1. 三种网络在准确率的对比 2. 三种网络在损失值的对比 3. 三种网络在计算时间的对比 4. RNN(传统循环神经网络) 主要特点: RNN 是最基础的循环神经网络,通过 递归 计算每个时间步的输出。在每个时间步,RNN 会将当前…

hackmyvm-hero

信息收集 ┌──(root㉿kali)-[/home/kali/Desktop/hackmyvm] └─# arp-scan -I eth1 192.168.56.0/24 Interface: eth1, type: EN10MB, MAC: 00:0c:29:34:da:f5, IPv4: 192.168.56.103 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192…

纷析云:赋能企业财务数字化转型的开源解决方案

在企业数字化转型的浪潮中,财务管理的高效与安全成为关键。纷析云凭借其开源、安全、灵活的财务软件解决方案,为企业提供了一条理想的转型路径。 一、开源的力量:自主、安全、高效 纷析云的核心优势在于其100%开源的财务软件源码。这意味着…

异常c/c++

目录 1.c语言传统处理错误方式 1、终止程序 2、返回错误码 2.c异常概念 3.异常的使用 3.1异常的抛出与捕获 3.2异常安全(还有一些异常重新抛出) 3.3异常规范 4.自定义异常体系 5.c标准库的异常体系 6.异常优缺点 1、优点 2、缺点 7、补充 1.…

SAP-ABAP:使用ST05(SQL Trace)追踪结构字段来源的步骤

ST05 是 SAP 提供的 SQL 跟踪工具,可以记录程序运行期间所有数据库操作(如 SELECT、UPDATE、INSERT)。通过分析跟踪结果,可以精准定位程序中结构字段对应的数据库表。 步骤1:激活ST05跟踪 事务码 ST05 → 点击 Activa…

sklearn中的决策树-分类树:剪枝参数

剪枝参数 在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树 往往会过拟合。为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策…

安宝特科技 | Vuzix Z100智能眼镜+AugmentOS:重新定义AI可穿戴设备的未来——从操作系统到硬件生态,如何掀起无感智能革命?

一、AugmentOS:AI可穿戴的“操作系统革命” 2025年2月3日,Vuzix与AI人机交互团队Mentra联合推出的AugmentOS,被业内视为智能眼镜领域的“iOS时刻”。这款全球首个专为智能眼镜设计的通用操作系统,通过三大突破重新定义了AI可穿戴…

基于Rook的Ceph云原生存储部署与实践指南(上)

#作者:任少近 文章目录 1 Ceph环境准备2 rook部署ceph群集2.1 Rook 帮助地址2.2 安装ceph2.3 获取csi镜像2.4 Master参加到osd2.5 设置默认存储 3 Rook部署云原生RBD块存储3.1 部署storageclass资源3.2 部署WordPress使用RBD3.3 WordPress访问 4 Rook部署云原生RGW…

2月27(信息差)

🌍雷军超钟睒睒登顶中国首富 身家近4400亿元 🎄全球AI大混战升温!超越Sora的阿里万相大模型开源 家用显卡都能跑 ✨小米15 Ultra、小米SU7 Ultra定档2月27日 雷军宣布:向超高端进发 1.刚刚!DeepSeek硬核发布&#xff…

【Linux】文件系统深度解析:从基础到高级应用

🎬 个人主页:努力可抵万难 📖 个人专栏:《C语法》《Linux系列》《数据结构及算法》 ⛰️ 路虽远,行则将至 目录 📚一、引言:文件系统的核心作用与历史演进 📖1.文件系统的定义与功…

《Effective Objective-C》阅读笔记(中)

目录 接口与API设计 用前缀避免命名空间冲突 提供“全能初始化方法” 实现description方法 尽量使用不可变对象 使用清晰而协调的命名方式 方法命名 ​编辑类与协议命名 为私有方法名加前缀 理解OC错误模型 理解NSCopying协议 协议与分类 通过委托与数据源协议进行…

MongoDB—(一主、一从、一仲裁)副本集搭建

MongoDB集群介绍: MongoDB 副本集是由多个MongoDB实例组成的集群,其中包含一个主节点(Primary)和多个从节点(Secondary),用于提供数据冗余和高可用性。以下是搭建 MongoDB 副本集的详细步骤&am…

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.3.1单节点安装(Docker与手动部署)

👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 10分钟快速部署Elasticsearch单节点环境1. 系统环境要求1.1 硬件配置推荐1.2 软件依赖 2. Docker部署方案2.1 部署流程2.2 参数说明2.3 性能优化建议 3. 手动部署方案3.1 安…

Rt-thread源码剖析(1)——内核对象

前言 该系列基于rtthread-nano的内核源码,来研究RTOS的底层逻辑,本文介绍RTT的内核对象,对于其他RTOS来说也可供参考,万变不离其宗,大家都是互相借鉴,实现不会差太多。 内核对象容器 首先要明确的一点是什…