应用的负载均衡

概述

负载均衡(Load Balancing)

调度后方的多台机器,以统一的接口对外提供服务,承担此职责的技术组件被称为“负载均衡”。

负载均衡器将传入的请求分发到应用服务器和数据库等计算资源。负载均衡是计算机网络中一种用于优化资源利用、最大化吞吐量、减少响应时间以及确保系统可靠性的重要技术。负载均衡通过在多个计算资源(如服务器)之间分配工作负荷来实现这些目标,从而避免了任何单一资源成为瓶颈。

在互联网时代的早期,网站流量还相对较小,并且业务也比较简单,单台服务器便有可能满足访问需要,但时至今日,互联网应用也好,企业级应用也好,一般实际用于生产的系统,几乎都离不开集群部署了。信息系统不论是采用单体架构多副本部署还是微服务架构,不论是为了实现高可用还是为了获得高性能,都需要利用到多台机器来扩展服务能力,希望用户的请求不管连接到哪台机器上,都能得到相同的处理。另一方面,如何构建和调度服务集群这事情,又必须对用户一侧保持足够的透明,即使请求背后是由一千台、一万台机器来共同响应的,也绝非用户所关心的事情,用户需记住的只有一个域名地址而已。调度后方的多台机器,以统一的接口对外提供服务,承担此职责的技术组件被称为“负载均衡”(Load Balancing)。

真正大型系统的负载均衡过程往往是多级的。譬如,在各地建有多个机房,或机房有不同网络链路入口的大型互联网站,会从 DNS 解析开始,通过“域名” → “CNAME” → “负载调度服务” → “就近的数据中心入口”的路径,先将来访地用户根据 IP 地址(或者其他条件)分配到一个合适的数据中心中,然后才到稍后将要讨论的各式负载均衡。在 DNS 层面的负载均衡与前面介绍的 DNS 智能线路、内容分发网络等,在工作原理上是类似的,其差别只是数据中心能提供的不仅有缓存,而是全方位的服务能力。由于这种方式此前已经详细讲解过,后续我们所讨论的“负载均衡”就只聚焦于网络请求进入数据中心入口之后的其他级次的负载均衡。

无论在网关内部建立了多少级的负载均衡,从形式上来说都可以分为两种:四层负载均衡和七层负载均衡。我们所说的“四层”、“七层”,指的是经典的OSI 七层模型中第四层传输层和第七层应用层,下图是对 OSI 七层模型的介绍。

层数

数据单元

功能

7

应用层
Application Layer

数据
Data

提供为应用软件提供服务的接口,用于与其他应用软件之间的通信。典型协议:HTTP、HTTPS、FTP、Telnet、SSH、SMTP、POP3 等

6

表达层
Presentation Layer

数据
Data

把数据转换为能与接收者的系统格式兼容并适合传输的格式。

5

会话层
Session Layer

数据
Data

负责在数据传输中设置和维护计算机网络中两台计算机之间的通信连接。

4

传输层
Transport Layer

数据段
Segments

把传输表头加至数据以形成数据包。传输表头包含了所使用的协议等发送信息。典型协议:TCP、UDP、RDP、SCTP、FCP 等

3

网络层
Network Layer

数据包
Packets

决定数据的传输路径选择和转发,将网络表头附加至数据段后以形成报文(即数据包)。典型协议:IPv4/IPv6、IGMP、ICMP、EGP、RIP 等

2

数据链路层
Data Link Layer

数据帧
Frame

负责点对点的网络寻址、错误侦测和纠错。当表头和表尾被附加至数据包后,就形成数据帧(Frame)。典型协议:WiFi(802.11)、Ethernet(802.3)、PPP 等。

1

物理层
Physical Layer

比特流
Bit

在物理网络上传送数据帧,它负责管理电脑通信设备和网络媒体之间的互通。包括了针脚、电压、线缆规范、集线器、中继器、网卡、主机接口卡等。

                                                                OSI 七层模型

四层负载均衡

现在所说的“四层负载均衡”其实是多种均衡器工作模式的统称,“四层”的意思是说这些工作模式的共同特点是维持着同一个 TCP 连接,而不是说它只工作在第四层。事实上,这些模式主要都是工作在二层(数据链路层,改写 MAC 地址)和三层(网络层,改写 IP 地址)上,单纯只处理第四层(传输层,可以改写 TCP、UDP 等协议的内容和端口)的数据无法做到负载均衡的转发,因为 OSI 的下三层是媒体层(Media Layers),上四层是主机层(Host Layers),既然流量都已经到达目标主机上了,也就谈不上什么流量转发,最多只能做代理了。但出于习惯和方便,现在几乎所有的资料都把它们统称为四层负载均衡。基于TCP连接的流量转发。

数据链路层负载均衡

数据链路层负载均衡所做的工作,是修改请求的数据帧中的 MAC 目标地址,让用户原本是发送给负载均衡器的请求的数据帧,被二层交换机根据新的 MAC 目标地址转发到服务器集群中对应的服务器(后文称为“真实服务器”,Real Server)的网卡上,这样真实服务器就获得了一个原本目标并不是发送给它的数据帧。

由于二层负载均衡器在转发请求过程中只修改了帧的 MAC 目标地址,不涉及更上层协议(没有修改 Payload 的数据),所以在更上层(第三层)看来,所有数据都是未曾被改变过的。由于第三层的数据包,即 IP 数据包中包含了源(客户端)和目标(均衡器)的 IP 地址,只有真实服务器保证自己的 IP 地址与数据包中的目标 IP 地址一致,这个数据包才能被正确处理。因此,使用这种负载均衡模式时,需要把真实物理服务器集群所有机器的虚拟 IP 地址(Virtual IP Address,VIP)配置成与负载均衡器的虚拟 IP 一样,这样经均衡器转发后的数据包就能在真实服务器中顺利地使用。也正是因为实际处理请求的真实物理服务器 IP 和数据请求中的目的 IP 是一致的,所以响应结果就不再需要通过负载均衡服务器进行地址交换,可将响应结果的数据包直接从真实服务器返回给用户的客户端,避免负载均衡器网卡带宽成为瓶颈,因此数据链路层的负载均衡效率是相当高的。

虽然数据链路层负载均衡效率很高,但它并不能适用于所有的场合,除了那些需要感知应用层协议信息的负载均衡场景它无法胜任外(所有的四层负载均衡器都无法胜任,将在后续介绍七层均衡器时一并解释),它在网络一侧受到的约束也很大。二层负载均衡器直接改写目标 MAC 地址的工作原理决定了它与真实的服务器的通信必须是二层可达的,通俗地说就是必须位于同一个子网当中,无法跨 VLAN。优势(效率高)和劣势(不能跨子网)共同决定了数据链路层负载均衡最适合用来做数据中心的第一级均衡设备,用来连接其他的下级负载均衡器。

网络层负载均衡

我们可以沿用与二层改写 MAC 地址相似的思路,通过改变这里面的 IP 地址来实现数据包的转发。

第一种是保持原来的数据包不变,新创建一个数据包,把原来数据包的 Headers 和 Payload 整体作为另一个新的数据包的 Payload,在这个新数据包的 Headers 中写入真实服务器的 IP 作为目标地址,然后把它发送出去。经过三层交换机的转发,真实服务器收到数据包后,必须在接收入口处设计一个针对性的拆包机制,把由负载均衡器自动添加的那层 Headers 扔掉,还原出原来的数据包来进行使用。这样,真实服务器就同样拿到了一个原本不是发给它(目标 IP 不是它)的数据包,达到了流量转发的目的。那时候还没有流行起“禁止套娃”的梗,所以设计者给这种“套娃式”的传输起名叫做“IP 隧道”(IP Tunnel)传输,也还是相当的形象。

第二种修改方式——改变目标数据包:直接把数据包 Headers 中的目标地址改掉,修改后原本由用户发给均衡器的数据包,也会被三层交换机转发送到真实服务器的网卡上,而且因为没有经过 IP 隧道的额外包装,也就无须再拆包了。但问题是这种模式是通过修改目标 IP 地址才到达真实服务器的,如果真实服务器直接将应答包返回客户端的话,这个应答数据包的源 IP 是真实服务器的 IP,也即均衡器修改以后的 IP 地址,客户端不可能认识该 IP,自然就无法再正常处理这个应答了。因此,只能让应答流量继续回到负载均衡,由负载均衡把应答包的源 IP 改回自己的 IP,再发给客户端,这样才能保证客户端与真实服务器之间的正常通信。这种负载均衡的模式的确被称为 NAT 模式,此时,负载均衡器就是充当了家里、公司、学校的上网路由器的作用。NAT 模式的负载均衡器运维起来十分简单,只要机器将自己的网关地址设置为均衡器地址,就无须再进行任何额外设置了。

“网络地址转换”(Network Address Translation,NAT)

在流量压力比较大的时候,NAT 模式的负载均衡会带来较大的性能损失,比起直接路由和 IP 隧道模式,甚至会出现数量级上的下降。这点是显而易见的,由负载均衡器代表整个服务集群来进行应答,各个服务器的响应数据都会互相挣抢均衡器的出口带宽,这就好比在家里用 NAT 上网的话,如果有人在下载,你打游戏可能就会觉得卡顿是一个道理,此时整个系统的瓶颈很容易就出现在负载均衡器上。

还有一种更加彻底的 NAT 模式:即均衡器在转发时,不仅修改目标 IP 地址,连源 IP 地址也一起改了,源地址就改成均衡器自己的 IP,称作 Source NAT(SNAT)。这样做的好处是真实服务器无须配置网关就能够让应答流量经过正常的三层路由回到负载均衡器上,做到了彻底的透明。但是缺点是由于做了 SNAT,真实服务器处理请求时就无法拿到客户端的 IP 地址了,从真实服务器的视角看来,所有的流量都来自于负载均衡器,这样有一些需要根据目标 IP 进行控制的业务逻辑就无法进行。

七层负载均衡

应用层负载均衡

前面介绍的四层负载均衡工作模式都属于“转发”,即直接将承载着 TCP 报文的底层数据格式(IP 数据包或以太网帧)转发到真实服务器上,此时客户端到响应请求的真实服务器维持着同一条 TCP 通道。但工作在四层之后的负载均衡模式就无法再进行转发了,只能进行代理,此时真实服务器、负载均衡器、客户端三者之间由两条独立的 TCP 通道来维持通信。

如果只论网络性能,七层均衡器肯定是无论如何比不过四层均衡器的,它比四层均衡器至少多一轮 TCP 握手,有着跟 NAT 转发模式一样的带宽问题,而且通常要耗费更多的 CPU,因为可用的解析规则远比四层丰富。所以如果用七层均衡器去做下载站、视频站这种流量应用是不合适的,起码不能作为第一级均衡器。但是,如果网站的性能瓶颈并不在于网络性能,要论整个服务集群对外所体现出来的服务性能,七层均衡器就有它的用武之地了。这里面七层均衡器的底气就是来源于它工作在应用层,可以感知应用层通信的具体内容,往往能够做出更明智的决策,玩出更多的花样来。 举个生活中的例子,四层均衡器就像银行的自助排号机,转发效率高且不知疲倦,每一个达到银行的客户根据排号机的顺序,选择对应的窗口接受服务;而七层均衡器就像银行大堂经理,他会先确认客户需要办理的业务,再安排排号。这样办理理财、存取款等业务的客户,会根据银行内部资源得到统一协调处理,加快客户业务办理流程,有一些无须柜台办理的业务,由大堂经理直接就可以解决了,譬如,反向代理的就能够实现静态资源缓存,对于静态资源的请求就可以在反向代理上直接返回,无须转发到真实服务器。

七层负载均衡可以实现的功能

  • 前面介绍 CDN 应用时,所有 CDN 可以做的缓存方面的工作(就是除去 CDN 根据物理位置就近返回这种优化链路的工作外),七层均衡器全都可以实现,譬如静态资源缓存、协议升级、安全防护、访问控制,等等。
  • 七层均衡器可以实现更智能化的路由。譬如,根据 Session 路由,以实现亲和性的集群;根据 URL 路由,实现专职化服务(此时就相当于网关的职责);甚至根据用户身份路由,实现对部分用户的特殊服务(如某些站点的贵宾服务器),等等。
  • 某些安全攻击可以由七层均衡器来抵御,譬如一种常见的 DDoS 手段是 SYN Flood 攻击,即攻击者控制众多客户端,使用虚假 IP 地址对同一目标大量发送 SYN 报文。从技术原理上看,由于四层均衡器无法感知上层协议的内容,这些 SYN 攻击都会被转发到后端的真实服务器上;而七层均衡器下这些 SYN 攻击自然在负载均衡设备上就被过滤掉,不会影响到后面服务器的正常运行。类似地,可以在七层均衡器上设定多种策略,譬如过滤特定报文,以防御如 SQL 注入等应用层面的特定攻击手段。
  • 很多微服务架构的系统中,链路治理措施都需要在七层中进行,譬如服务降级、熔断、异常注入,等等。譬如,一台服务器只有出现物理层面或者系统层面的故障,导致无法应答 TCP 请求才能被四层均衡器所感知,进而剔除出服务集群,如果一台服务器能够应答,只是一直在报 500 错,那四层均衡器对此是完全无能为力的,只能由七层均衡器来解决。

通俗地解释四层vs七层负载均衡

如果看到上面罗里吧嗦那么多,对负载均衡还是感觉云里雾里、一知半解不甚清晰的。这个联系生活实际的案例,通俗解说的版本,请你一定不要错过。

四层和七层负载均衡主要指的是在网络OSI模型的不同层次上进行流量分配的方式。为了更好地理解这两个概念,我们可以将网络通信过程比作邮寄包裹的过程。

四层负载均衡

想象一下你正在寄送一个包裹,4层负载均衡就像是根据包裹的目的地(IP地址)和运输方式(TCP/UDP端口)来决定如何分发这些包裹。在这个过程中,我们并不关心包裹里面装的是什么,只关注它的目的地和运输方式。同样地,在网络通信中,4层负载均衡器仅根据数据包的目标IP地址和端口号来决定将其转发到哪个服务器。这种方式处理速度非常快,因为它不需要分析数据包的内容,但它也无法做出基于应用内容的决策。

七层负载均衡

接着上面邮寄包裹的例子,如果把7层负载均衡比作处理包裹的方式,那就是不仅考虑了包裹的目的地和运输方式,还会打开包裹查看里面的内容,根据内容进一步决定如何分发。在实际的网络通信中,这意味着7层负载均衡器会检查HTTP请求等应用层信息,以做出更加智能的决策。例如,它可以依据URL、cookie或用户的位置等信息来选择最合适的数据中心或服务器来处理请求。这种做法能够提供更高级别的灵活性和服务质量,但因为需要解析更多的信息,所以处理起来相对慢一些。

总结

  • 四层负载均衡:快速且简单,基于IP和端口进行流量分配。
  • 七层负载均衡:更为智能,可以基于应用层信息(如HTTP头部、消息内容等)来进行更细致的流量控制。

两者各有优势,选择哪种方式取决于具体的应用需求、性能要求以及预算等因素。

综上所述,四层负载对比七层负载有以下特点:

  • 四层负载均衡的优势是性能高,七层负载均衡的优势是功能强。
  • 做多级混合负载均衡,通常应是低层的负载均衡在前,高层的负载均衡在后。

均衡策略与实现

负载均衡的两大职责是“选择谁来处理用户请求”和“将用户请求转发过去”。到此我们仅介绍了后者,即请求的转发或代理过程。前者是指均衡器所采取的均衡策略,由于这一块涉及的均衡算法太多,笔者无法逐一展开,所以本节仅从功能和应用的角度去介绍一些常见的均衡策略。

  • 轮循均衡(Round Robin):每一次来自网络的请求轮流分配给内部中的服务器,从 1 至 N 然后重新开始。此种均衡算法适合于集群中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况。
  • 权重轮循均衡(Weighted Round Robin):根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。譬如:服务器 A 的权值被设计成 1,B 的权值是 3,C 的权值是 6,则服务器 A、B、C 将分别接收到 10%、30%、60%的服务请求。此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。
  • 随机均衡(Random):把来自客户端的请求随机分配给内部中的多个服务器,在数据足够大的场景下能达到相对均衡的分布。
  • 权重随机均衡(Weighted Random):此种均衡算法类似于权重轮循算法,不过在分配处理请求时是个随机选择的过程。
  • 一致性哈希均衡(Consistency Hash):根据请求中某一些数据(可以是 MAC、IP 地址,也可以是更上层协议中的某些参数信息)作为特征值来计算需要落在的节点上,算法一般会保证同一个特征值每次都一定落在相同的服务器上。一致性的意思是保证当服务集群某个真实服务器出现故障,只影响该服务器的哈希,而不会导致整个服务集群的哈希键值重新分布。
  • 响应速度均衡(Response Time):负载均衡设备对内部各服务器发出一个探测请求(例如 Ping),然后根据内部中各服务器对探测请求的最快响应时间来决定哪一台服务器来响应客户端的服务请求。此种均衡算法能较好的反映服务器的当前运行状态,但这最快响应时间仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。
  • 最少连接数均衡(Least Connection):客户端的每一次请求服务在服务器停留的时间可能会有较大的差异,随着工作时间加长,如果采用简单的轮循或随机均衡算法,每一台服务器上的连接进程可能会产生极大的不平衡,并没有达到真正的负载均衡。最少连接数均衡算法对内部中需负载的每一台服务器都有一个数据记录,记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,将把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载更加均衡。此种均衡策略适合长时处理的请求服务,如 FTP 传输。
  • …………

从实现角度来看,负载均衡器的实现分为“软件均衡器”和“硬件均衡器”两类。在软件均衡器方面,又分为直接建设在操作系统内核的均衡器和应用程序形式的均衡器两种。前者的代表是 LVS(Linux Virtual Server),后者的代表有 Nginx、HAProxy、KeepAlived 等,前者性能会更好,因为无须在内核空间和应用空间中来回复制数据包;而后者的优势是选择广泛,使用方便,功能不受限于内核版本。

在硬件均衡器方面,往往会直接采用应用专用集成电路(Application Specific Integrated Circuit,ASIC)来实现,有专用处理芯片的支持,避免操作系统层面的损耗,得以达到最高的性能。这类的代表就是著名的 F5 和 A10 公司的负载均衡产品。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/978418.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux: 已占用接口

Linux: 已占用接口 1. netstat(适用于旧系统)1.1 书中对该命令的介绍 2. ss(适用于新系统,替代 netstat)3. lsof(查看详细进程信息)4. fuser(快速查找占用端口的进程)5. …

组件注册方式、传递数据

组件注册 一个vue组件要先被注册,这样vue才能在渲染模版时找到其对应的实现。有两种注册方式:全局注册和局部注册。(组件的引入方式) 以下这种属于局部引用。 组件传递数据 注意:props传递数据,只能从父…

使用DeepSeek/chatgpt等AI工具辅助网络协议流量数据包分析

随着deepseek,chatgpt等大模型的能力越来越强大,本文将介绍一下deepseek等LLM在分数流量数据包这方面的能力。为需要借助LLM等大模型辅助分析流量数据包的同学提供参考,也了解一下目前是否有必要继续学习wireshark工具以及复杂的协议知识。 pcap格式 目…

蓝桥杯嵌入式客观题以及解释

第十一届省赛(大学组) 1.稳压二极管时利用PN节的反向击穿特性制作而成 2.STM32嵌套向量终端控制器NVIC具有可编程的优先等级 16 个 3.一个功能简单但是需要频繁调用的函数,比较适用内联函数 4.模拟/数字转换器的分辨率可以通过输出二进制…

《Mycat核心技术》第17章:实现MySQL的读写分离

作者:冰河 星球:http://m6z.cn/6aeFbs 博客:https://binghe.gitcode.host 文章汇总:https://binghe.gitcode.host/md/all/all.html 星球项目地址:https://binghe.gitcode.host/md/zsxq/introduce.html 沉淀&#xff0c…

虚拟机 | Ubuntu 安装流程以及界面太小问题解决

文章目录 前言一、Ubuntu初识二、使用步骤1.下载ubuntu镜像2.创建虚拟机1、使用典型(节省空间)2、稍后安装方便配置3、优选Linux版本符合4、浏览位置,选择空间大的磁盘 6、 配置信息,选择镜像7、 启动虚拟机,执行以下步…

2025系统架构师(一考就过):案例之三:架构风格总结

软件架构风格是描述某一特定应用领域中系统组织方式的惯用模式,按照软件架构风格,物联网系统属于( )软件架构风格。 A:层次型 B:事件系统 C:数据线 D:C2 答案:A 解析: 物联网分为多个层次&#xff0…

ubuntu离线安装Ollama并部署Llama3.1 70B INT4

文章目录 1.下载Ollama2. 下载安装Ollama的安装命令文件install.sh3.安装并验证Ollama4.下载所需要的大模型文件4.1 加载.GGUF文件(推荐、更容易)4.2 加载.Safetensors文件(不建议使用) 5.配置大模型文件 参考: 1、 如…

算法-数据结构(图)-DFS深度优先遍历

深度优先遍历(DFS)是一种用于遍历或搜索图的算法。以下是对它的详细介绍: 1. 定义 基本思想:从图中某个起始顶点出发,沿着一条路径尽可能深地访问图中的顶点,直到无法继续前进(即到达一个没…

uni-app集成sqlite

Sqlite SQLite 是一种轻量级的关系型数据库管理系统(RDBMS),广泛应用于各种应用程序中,特别是那些需要嵌入式数据库解决方案的场景。它不需要单独的服务器进程或系统配置,所有数据都存储在一个单一的普通磁盘文件中&am…

python文件的基本操作,文件读写

1.文件 1.1文件就是存储在某种长期存储设备上的一段数据 1.2文件操作 打开文件-->读写文件-->关闭文件 注意:可以只打开和关闭文件不进行任何操作 1.3文件对象的方法 1.open():创建一个file对象,默认以只读模式打开 2.read(n):n表示从文件中…

半导体晶圆精控:ethercat转profient网关数据提升制造精度

数据采集系统通过网关连接离子注入机,精细控制半导体晶圆制造过程中的关键参数。 在半导体制造中,晶圆制造设备的精密控制是决定产品性能的关键因素。某半导体工厂采用耐达讯Profinet转EtherCAT协议网关NY-PN-ECATM,将其数据采集系统与离子注…

双臂机器人的动力学建模

双臂机器人的动力学建模是研究机器人在运动过程中的力学行为和动力学特性,主要目的是确定在给定的控制指令下,机器人各个关节或末端执行器所受的力与加速度之间的关系。建立动力学模型通常涉及以下几个步骤: 1. 定义机器人坐标系和关节空间 双…

驱动开发系列39 - Linux Graphics 3D 绘制流程(二)- 设置渲染管线

一:概述 Intel 的 Iris 驱动是 Mesa 中的 Gallium 驱动,主要用于 Intel Gen8+ GPU(Broadwell 及更新架构)。它负责与 i915 内核 DRM 驱动交互,并通过 Vulkan(ANV)、OpenGL(Iris Gallium)、或 OpenCL(Clover)来提供 3D 加速。在 Iris 驱动中,GPU Pipeline 设置 涉及…

中国的Cursor! 字节跳动推出Trae,开放Windows版(附资源),开发自己的网站,内置 GPT-4o 强大Al模型!

Trae是什么 Trae 是字节跳动推出的免费 AI IDE,通过 AI 技术提升开发效率。支持中文,集成了 Claude 3.5 和 GPT-4 等主流 AI 模型,完全免费使用。Trae 的主要功能包括 Builder 模式和 Chat 模式,其中 Builder 模式可帮助开发者从…

【洛谷排序算法】P1012拼数-详细讲解

洛谷 P1012 拼数这道题本身并非单纯考察某种经典排序算法(如冒泡排序、选择排序、插入排序、快速排序、归并排序等)的实现,而是在排序的基础上,自定义了排序的比较规则,属于自定义排序类型的题目。不过它借助了标准库中…

阿里云可观测全面拥抱 OpenTelemetry 社区

作者:古琦 在云计算、微服务、容器化等技术重塑 IT 架构的今天,系统复杂度呈指数级增长。在此背景下,开源可观测性技术已从辅助工具演变为现代 IT 系统的"数字神经系统",为企业提供故障预警、性能优化和成本治理的全方…

STM32开发学习(三)----使用STM32CUBEMX创建项目

前言 开始正式接触代码,学习代码开发,先熟悉STM32CUBEMX软件,控制开发板的GPIO。(STM32F103C8T6)。 正式开始 1.打开软件 2.点击ACCESS TO MCU SELECTOR,进入软件选择,可能会弹出更新,等待更新完成即可。…

初识Skywalking

背景 筒子们,最近雷袭又接触到一项新工具:Skywalking,本着好东西要和大家分享的原则,在对它有了初步了解,草草的进行了实践之后,就迫不及待的把它推荐给大家了。在写本篇博客时,本人对Skywalkin…

【论文笔记】ClipSAM: CLIP and SAM collaboration for zero-shot anomaly segmentation

原文链接 摘要 近年来,CLIP 和 SAM 等基础模型在零样本异常分割 (ZSAS) 任务中展现出良好的性能。然而,无论是基于 CLIP 还是基于 SAM 的 ZSAS 方法,仍然存在不可忽视的关键缺陷:1) CLIP 主要关注不同输入之间的全局特征对齐&am…