【Linux探索学习】第二十七弹——信号(上):Linux 信号基础详解

Linux学习笔记:

https://blog.csdn.net/2301_80220607/category_12805278.html?spm=1001.2014.3001.5482

前言:

前面我们已经将进程通信部分讲完了,现在我们来讲一个进程部分也非常重要的知识点——信号,信号也是进程间通信的一种,本篇主要讲解信号的概念和信号的几种产生方法及对应的场景

目录

一、引言

二、信号的概念

2.1 什么是信号

2.2 信号的作用

2.3 信号的特点

2.4 常见信号列表

​编辑

三、信号的产生

3.1 前台进程和后台进程

3.2 用户产生信号

3.3 系统产生信号

3.4 软件产生信号

四、信号的处理

4.1 默认处理方式

4.2 自定义信号处理函数

五、总结


一、引言

在 Linux 操作系统中,信号(Signal)是一种进程间通信(IPC,Inter - Process Communication)的机制,它用于通知进程发生了某种异步事件。信号可以来自内核,也可以来自其他进程。进程接收到信号后,会根据信号的类型以及自身的处理方式做出相应的反应。理解信号对于编写健壮的 Linux 程序以及深入理解 Linux 操作系统的运行机制至关重要。

二、信号的概念

2.1 什么是信号

信号是一种软中断,它是一种异步通知机制。当某个特定事件发生时,如用户按下特定组合键、系统资源耗尽、进程异常终止等,系统会向相关进程发送一个信号。每个信号都有一个对应的编号和名称,例如信号 1 表示 SIGHUP(挂起信号),信号 9 表示 SIGKILL(强制终止信号)。

2.2 信号的作用

信号的主要作用是让进程能够对异步事件做出响应。例如,当用户在终端中按下 Ctrl + C 组合键时,系统会向当前前台进程发送 SIGINT 信号,通常进程会接收到这个信号后停止当前正在执行的任务并退出。信号还可以用于进程间的通信,一个进程可以向另一个进程发送信号来通知其执行某些操作。

结合2.1和2.2我们来讲解一个概念:信号是一种软中断,是什么意思呢?当我们往键盘中输入内容时是如何告诉给内核的?ctrl+c又是如何被解释为指令的呢?

我们先来看下面这张图:

        键盘实际上是通过中断来让操作系统知道自己要写入内容的,键盘被按下时,就会触发硬件中断,不同的硬件对应着不同的中断号,中断单元就可以通过它们的中断号将它们与CPU中不同的键位相连,从而使CPU中这个方向的寄存器(32位)特定位置产生电信号,操作系统中有一个叫中断向量表的类似于函数指针结构体的结构,里面保存着访问各种外设的方法,操作系统通过CPU产生的电信号就辨别出要获取哪种硬件的信息,从而通过中断向量表中的方法,将硬件中的信息拷贝到操作系统的文件缓冲区中(操作系统下一切皆文件,且每一个文件都有自己的文件缓冲中区),然后再拷贝到用户缓冲区
       同时比如键盘等外键,操作系统在获取键盘上的信息时会先进行识别,会对数据进行判断,如果是控制进程的比如ctrl+c等组合键就不会往缓冲区中拷贝,我们可以发现我们学习的信号与上面的中断过程很像,其实信号,就是用软件方式,模拟的对讲程的硬件中断,所以信号也被叫做软中断

2.3 信号的特点

  1. 异步性:信号的产生是异步的,与进程的执行顺序无关。进程在运行过程中可能随时收到信号。
  1. 简单性:信号机制相对简单,只需要一个信号编号就可以标识不同的信号。
  1. 有限性:Linux 系统中定义的信号数量是有限的,不同的系统可能略有差异,但通常在几十种左右。

2.4 常见信号列表

信号编号

信号名称

含义

默认处理方式

1

SIGHUP

挂起信号,通常在终端关闭时发送给相关进程

终止进程

2

SIGINT

中断信号,由用户按下 Ctrl + C 组合键产生

终止进程

3

SIGQUIT

退出信号,由用户按下 Ctrl + \ 组合键产生

终止进程并生成核心转储文件

9

SIGKILL

强制终止信号,不能被捕获、阻塞或忽略

立即终止进程

15

SIGTERM

终止信号,通常用于正常终止进程

终止进程

18

SIGCONT

继续信号,用于恢复被暂停的进程

继续执行进程

19

SIGSTOP

停止信号,用于暂停进程,不能被捕获、阻塞或忽略

暂停进程

可以通过kill -l指令查看所有信号

kill -l

三、信号的产生

3.1 前台进程和后台进程

先来科普一个小知识点:前台进程和后台进程,来看下面一个程序

#include<iostream>
#include<unistd.h>
using namespace std;
int main()
{
    while(true)
    {
        cout<<"I am a crazy process"<<endl;
        sleep(1);
    }
    return 0;
}

我们进行编译后会得到一个可执行程序

./myfile

我们这样执行时我们会发现在程序运行的时候,我们输入其它指令比如Is,pwd等都不会有结果,进程还在继续运行,除非用ctrl+c终止掉进程,这样的进程称为前台进程

./myfile &

这种的后面加上地址符的叫做后台进程,后台进程可以被其它进程命令临时打断并执行这个命令,比如我们输入ls指令,进程就会暂停并且输出Is的结果,但是最后需要自己把进程结束掉

Linux中,一次登陆中, 一个终端,一般会配上一个bash,每一个登陆,只允许一个进程是前台进程,可以允许多个进程是后台进程
当./process运行时,输入指令之所以不能运行就是因为此时的前台进程由bash转变为了process

  • 终端占用情况
    • 前台进程:会独占终端,直到进程执行完成或者被挂起,在这期间终端无法接受其他命令输入,用户只能与该进程进行交互。
    • 后台进程:不会占用终端,终端可以继续接受用户输入的其他命令,用户可以在同一个终端中同时启动多个后台进程,并随时切换到其他任务。
  • 运行特性
    • 前台进程:其执行过程会受到用户操作的直接影响,比如用户可以通过键盘输入来中断或暂停进程。如果终端关闭,前台进程通常会被终止,除非进行了特殊的设置。
    • 后台进程:通常是长时间运行的,不受终端关闭的影响,除非明确地对其进行停止或重启操作。它按照自身的逻辑和任务需求在后台持续运行,不会因为用户的一些常规操作而中断。

3.2 用户产生信号

  1. 键盘输入:用户可以通过在终端中按下特定的组合键来产生信号。例如:
    • Ctrl + C:产生 SIGINT 信号,用于中断当前正在运行的进程。比如,我们在终端中运行一个长时间运行的命令while true; do echo "Hello"; sleep 1; done,按下 Ctrl + C 后,该命令对应的进程会接收到 SIGINT 信号并终止。
    • Ctrl + \:产生 SIGQUIT 信号,不仅会终止进程,还会生成核心转储文件(如果系统配置允许,一般在云服务器上是默认关闭的,虚拟机上可能是开启的)。例如,运行一个简单的 C 程序#include <stdio.h> int main() { while(1); return 0; },编译运行后,按下 Ctrl + \,进程会终止并生成核心转储文件(在当前目录下,文件名为 core,具体名称和位置可能因系统配置而异)。(了解即可,这个生成core文件的内容与进程退出部分也有联系,有想了解的可以单独去搜索一下)
  1. 使用 kill 命令:用户可以使用 kill 命令向指定进程发送信号。kill 命令的基本语法是kill [信号编号] 进程ID。例如,要向进程 ID 为 1234 的进程发送 SIGTERM 信号(信号编号为 15),可以在终端中输入kill -15 1234,也可以使用信号名称kill -SIGTERM 1234。如果省略信号编号或名称,默认发送 SIGTERM 信号。

3.3 系统产生信号

  1. 进程异常:当进程发生异常时,如段错误(访问非法内存地址)、除零错误等,系统会向该进程发送相应的信号。
    • 段错误(Segmentation Fault):当进程访问了不属于它的内存区域时,会产生段错误,一般都是野指针问题,系统会向该进程发送 SIGSEGV 信号。例如,下面的 C 代码会导致段错误:
#include <stdio.h>

int main() {

int *ptr = NULL;

*ptr = 10; // 试图向空指针指向的地址写入数据,会引发段错误

return 0;

}

编译运行这段代码,程序会崩溃,并提示 “Segmentation fault”,这是因为进程接收到了 SIGSEGV 信号。

  • 除零错误(Division by Zero):当进程执行除法运算时,如果除数为零,会产生除零错误,系统会向该进程发送 SIGFPE 信号。例如:
#include <stdio.h>

int main()
{
    int a = 10;
    int b = 0;
    int c = a / b; // 除零操作,会引发除零错误
    return 0;
}

运行这段代码,程序会崩溃,并提示 “Floating point exception”,这是因为进程接收到了 SIGFPE 信号。

2. 系统资源相关:当系统资源达到一定阈值时,也可能产生信号。例如,当进程使用的内存超过了系统限制时,系统可能会发送 SIGKILL 信号来终止该进程,以防止系统内存耗尽。不过,这种情况通常需要系统进行相关的配置和监控。

3.4 软件产生信号

  1. 使用 kill 函数:在 C 语言编程中,可以使用 kill 函数向指定进程发送信号。kill 函数的原型可以用man手册查看,如下:
 man 2 kill

其中,pid 是目标进程的 ID,sig 是要发送的信号编号。例如,下面的代码演示了如何使用 kill 函数向另一个进程发送 SIGTERM 信号:

#include <stdio.h>
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
int main()
{
    pid_t target_pid = 1234; // 假设目标进程ID为1234
    int result = kill(target_pid, SIGTERM);
    if (result == -1)
    {
        perror("kill failed");
    }
    else
    {
        printf("SIGTERM sent to process %d\n", target_pid);
    }
    return 0;
}

在实际使用中,需要将target_pid替换为真实的目标进程 ID。

2. 使用 raise 函数:进程可以使用 raise 函数向自身发送信号。raise 函数的原型也可以通过man手册来查看,如下:

man raise

其中,sig 是要发送的信号编号。例如,下面的代码演示了如何使用 raise 函数向自身发送 SIGINT 信号:

#include <stdio.h>
#include <signal.h>
int main()
{
    int result = raise(SIGINT);
    if (result != 0)
    {
        perror("raise failed");
    }
    else
    {
        printf("SIGINT sent to self\n");
    }
    return 0;
}

运行这段代码,进程会接收到自己发送的 SIGINT 信号并终止。

四、信号的处理

4.1 默认处理方式

每个信号都有一个默认的处理方式,常见的默认处理方式包括:

  1. 终止进程:如 SIGINT、SIGTERM 等信号的默认处理方式是终止进程。
  1. 生成核心转储文件并终止进程:例如 SIGQUIT 信号,在终止进程的同时会生成核心转储文件,该文件包含了进程在收到信号时的内存状态等信息,可用于调试程序。
  1. 忽略信号:有些信号(如 SIGCHLD,子进程状态改变时发送给父进程的信号)的默认处理方式是忽略。

4.2 自定义信号处理函数

进程可以通过调用 signal 函数或 sigaction 函数来设置自定义的信号处理函数。

  1. signal 函数:signal 函数的原型如下:
man signal

其中,signum 是信号编号,handler 是指向信号处理函数的指针。例如,下面的代码演示了如何使用 signal 函数设置 SIGINT 信号的自定义处理函数:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum)
{
    printf("Received SIGINT. Cleaning up...\n");
    // 在这里进行一些清理工作,如关闭文件、释放资源等
    _exit(0); // 退出进程
}
int main()
{
    signal(SIGINT, signal_handler);
    while (1)
    {
        printf("Running...\n");
        sleep(1);
    }
    return 0;
}

在这个例子中,当进程接收到 SIGINT 信号时,会调用signal_handler函数,而不是默认的终止进程操作。

2. sigaction 函数:sigaction 函数比 signal 函数提供了更丰富的功能,它可以设置信号处理函数、处理信号时的掩码、信号的标志等。sigaction 函数的原型如下:

#include <signal.h>

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

struct sigaction {

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *, void *);

sigset_t sa_mask;

int sa_flags;

void (*sa_restorer)(void);

};

其中,signum 是信号编号,act 是指向新的信号处理动作的结构体指针,oldact 是指向旧的信号处理动作的结构体指针(如果不需要获取旧的处理动作,可以设为 NULL)。例如,下面的代码演示了如何使用 sigaction 函数设置 SIGINT 信号的自定义处理函数:

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum)
{
    printf("Received SIGINT. Cleaning up...\n");
    // 在这里进行一些清理工作,如关闭文件、释放资源等
    _exit(0); // 退出进程
}
int main()
{
    struct sigaction new_action, old_action;
    new_action.sa_handler = signal_handler;
    sigemptyset(&new_action.sa_mask);
    new_action.sa_flags = 0;
    sigaction(SIGINT, &new_action, &old_action);
    while (1)
    {
        printf("Running...\n");
        sleep(1);
    }
    return 0;
}

这段代码与使用 signal 函数的例子功能类似,但使用 sigaction 函数可以更灵活地配置信号处理方式。

五、总结

信号是 Linux 系统中一种重要的进程间通信和异步事件通知机制。通过本文,我们详细了解了信号的概念,信号的产生和部分信号的处理工作,后面我们还会讲解信号的捕捉等处理工作,学习信号可以帮助我们更好的实现进程通信和异步处理等诸多操作

本篇笔记:


感谢各位大佬观看,创作不易,还请各位大佬点赞支持!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/978268.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

74道高级Java面试合集,java开发模式面试题

前言 今天我们来说说Redis为什么高性能&#xff1f;如何做高可用&#xff1f; Redis为什么这么快&#xff1f; Redis是单线程的&#xff0c;避免了多线程的上下文切换和并发控制开销&#xff1b;Redis大部分操作时基于内存&#xff0c;读写数据不需要磁盘I/O&#xff0c;所以速…

【江科协-STM32】5. 输出比较

1. 输出比较简介 OC(Output Compare)输出比较。 输出比较可以通过CNT&#xff08;CNT计数器&#xff09;与CCR寄存器值的关系&#xff0c;来对输出电平进行置1、置0或翻转的操作&#xff0c;用于输出一定频率和占空比的PWM波形。 :::tip CNT计数器是正向计数器。它只能正向累…

轻量级日志管理平台Grafana Loki

文章目录 轻量级日志管理平台Grafana Loki背景什么是Loki为什么使用 Grafana Loki&#xff1f;架构Log Storage Grafana部署使用基于 Docker Compose 安装 LokiMinIO K8s集群部署Loki采集Helm 部署方式和案例 参考 轻量级日志管理平台Grafana Loki 背景 在微服务以及云原生时…

使用 Postman 访问 Keycloak 端点

1. 引言 在本教程中&#xff0c;我们将首先快速回顾 OAuth 2.0、OpenID 和 Keycloak。然后&#xff0c;我们将了解 Keycloak REST API 以及如何在 Postman 中调用它们。 2. OAuth 2.0 OAuth 2.0 是一个授权框架&#xff0c;它允许经过身份验证的用户通过令牌向第三方授予访问…

WEB1~6通杀

##解题思路 这六道题&#xff0c;通杀了&#xff0c;只因为是PHP的特性 来&#xff0c;看web6&#xff0c;过滤最复杂的正则&#xff0c;而且不能解析成大于999的值&#xff0c;但是&#xff0c;php是弱类型的语言&#xff0c;我只要输入任意字符数字&#xff0c;最终值就为0&…

I2C协议简介:串行通信的关键技术

目录 一、总线通信基本概念 二、I2C总线协议介绍 1. 时序图解析 &#xff08;1&#xff09;起始信号 &#xff08;2&#xff09;应答信号 &#xff08;3&#xff09;终止信号 &#xff08;4&#xff09;设备地址 &#xff08;5&#xff09;I2C传输方法 ​编辑 &#…

第二十四:5.2【搭建 pinia 环境】axios 异步调用数据

第一步安装&#xff1a;npm install pinia 第二步&#xff1a;操作src/main.ts 改变里面的值的信息&#xff1a; <div class"count"><h2>当前求和为&#xff1a;{{ sum }}</h2><select v-model.number"n">  // .number 这里是…

Web漏洞——命令注入漏洞学习

一、什么是命令注入漏洞 想象一下&#xff0c;你家有一个智能管家机器人。这个机器人可以通过你发出的指令来完成各种任务&#xff0c;比如“请打开电视机、播放音乐、开灯等等”。你只需要对它说&#xff1a;“请打开电视”&#xff0c;它就会去执行这个任务。但是&#xff0…

大模型自动提示优化(APO)综述笔记

自大型语言模型&#xff08;LLMs&#xff09;出现以来&#xff0c;提示工程一直是各种自然语言处理&#xff08;NLP&#xff09;任务中激发期望响应的关键步骤。然而&#xff0c;由于模型的快速进步、任务的多样性和相关最佳实践的变化&#xff0c;提示工程对最终用户来说仍然是…

快速排序(详解)c++

快速排序(Quick Sort)&#xff0c;既然敢起这样的名字&#xff0c;说明它是常⻅排序算法中较为优秀的。事实上&#xff0c;在很多情况下&#xff0c;快排确实是效率较⾼的算法&#xff1b;c的排序是以快排为基础&#xff0c;再加上堆排和插入排序做优化实现的&#xff0c;我们这…

【工具变量】公司企业数字领导力(2004-2023年)

数据简介&#xff1a;企业数字化领导力是指在数字经济时代&#xff0c;领导者通过战略性地使用数字资产、引领组织变革&#xff0c;使企业在数字化环境中获得持续成功的能力。对于上市公司而言&#xff0c;这种领导力尤为重要&#xff0c;因为它直接关系到企业的战略方向、市场…

浅谈新能源汽车充电桩建设问题分析及解决方案

摘要&#xff1a; 在全球倡导低碳减排的大背景下&#xff0c;新能源成为热门行业在全球范围内得以开展。汽车尾气排放会在一定程度上加重温室效应&#xff0c;并且化石能源的日渐紧缺也迫切对新能源汽车发展提出新要求。现阶段的新能源汽车以电力汽车为主&#xff0c;与燃油汽…

seacmsv9报错注入

1、seacms的介绍 ​ seacms中文名&#xff1a;海洋影视管理系统。是一个采用了php5mysql架构的影视网站框架&#xff0c;因此&#xff0c;如果该框架有漏洞&#xff0c;那使用了该框架的各个网站都会有相同问题。 2、源码的分析 漏洞的部分源码如下&#xff1a; <?php …

python学习四

python运算符与表达式 表达式: Python中的表达式是一种计算结果的代码片段。它可以包 含变量、运算符、常数和函数调用,用于执行各种数学、逻辑 和功能操作 算术运算符: 比较(关系)运算符: 赋值运算符: 逻辑运算符: 位运算符: 成员运算符: 身份运算符 <

Nginx面试宝典【刷题系列】

文章目录 1、nginx是如何实现高并发的&#xff1f;2、Nginx如何处理HTTP请求&#xff1f;3、使用“反向代理服务器”的优点是什么?4、列举Nginx服务器的最佳用途。5、Nginx服务器上的Master和Worker进程分别是什么?6、什么是C10K问题?7、请陈述stub_status和sub_filter指令的…

数字可调控开关电源设计(论文+源码)

1 设计要求 在本次数字可调控开关电源设计过程中&#xff0c;对关键参数设定如下&#xff1a; &#xff08;1&#xff09;输入电压&#xff1a;DC24-26V,输出电压&#xff1a;12-24&#xff08;可调&#xff09;&#xff1b; &#xff08;2&#xff09;输出电压误差&#xf…

清华大学《AIGC发展研究3.0》

大家好&#xff0c;我是吾鳴。 AIGC已经爆火好长一段时间了&#xff0c;特别是DeepSeek的爆火&#xff0c;直接让很多之前没有体会过推理模型的人可以免费的使用上推理模型&#xff0c;同时DeepSeek产品形态也是全球首创&#xff0c;就是直接把AI的思考过程展示给你看&#xff…

模型和数据集的平台之在Hugging Face上进行模型下载、上传以及创建专属Space

模型下载 步骤&#xff1a; 注册Hugging Face平台 https://huggingface.co/ 新建一个hf_download_josn.py 文件 touch hf_download_josn.py 编写hf_download_josn.py文件 import os from huggingface_hub import hf_hub_download# 指定模型标识符 repo_id "inter…

脚本无法获取响应主体(原因:CORS Missing Allow Credentials)

背景&#xff1a; 前端的端口号8080&#xff0c;后端8000。需在前端向后端传一个参数&#xff0c;让后端访问数据库去检测此参数是否出现过。涉及跨域请求&#xff0c;一直有这个bug是404文件找不到。 在修改过程当中不小心删除了一段代码&#xff0c;出现了这个bug&#xff…

C#实现本地AI聊天功能(Deepseek R1及其他模型)。

前言 1、C#实现本地AI聊天功能 WPFOllamaSharpe实现本地聊天功能,可以选择使用Deepseek 及其他模型。 2、此程序默认你已经安装好了Ollama。 在运行前需要线安装好Ollama,如何安装请自行搜索 Ollama下载地址&#xff1a; https://ollama.org.cn Ollama模型下载地址&#xf…