STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例,只用到USB,USART1极少的接口,体现FreeRTOS的各种操作过程。
在这里插入图片描述
操作教程(十三)配置FreeRTOS及相关环境,采用task api 任务访问函数获取任务状态参数,通过USB虚拟串口接收指令,根据指令执行相关的任务访问函数,并通过USB虚拟串口返回结果。常用的task api有如下一些:
在这里插入图片描述
FreeRTOS的教程较多,推荐参考正点原子所出的《STM32F407 FreeRTOS开发手册》了解相关知识。
在这里插入图片描述
在这里插入图片描述

STM32CUBEIDE工程配置

选择TIM1(也可以是其它TIM)作为FreeRTOS操作系统占用的时钟源:
在这里插入图片描述

在这里插入图片描述

配置时钟树包括USB的48MHz时钟:
在这里插入图片描述
配置PC13为低电平点灯的管脚:
在这里插入图片描述
配置USB串口:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
配置UART1串口(但本例中不用到UART1):
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

FreeRTOS配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成基础工程代码:
在这里插入图片描述
在生成代码的这个部分可以看到FreeRTOS代码部分:
在这里插入图片描述

任务实现

基于前述的配置,main.c代码里会加载Free-RTOS的配置,并启动几个任务的调度,当然,此时的任务都是什么也不干。实现LED闪灯,就在LED闪灯任务里加入代码即可:

void StartTask_TASK_LED_FLASH(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_LED_FLASH */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1000);
    HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);
  }
  /* USER CODE END StartTask_TASK_LED_FLASH */
}

也就实现了LED闪灯功能,其中osDelay(1000);实现1秒时间的操作系统调度延时,也就是1秒执行一次LED灯的亮灭。osDelay(1);是最小的调度延时,为1毫秒。要实现更小的延时,则可以用微秒延时函数实现,参考《STM32 HAL us delay(微秒延时)的指令延时实现方式及优化》

在USB虚拟串口的接收数据回调函数里,接收指令信息:
在这里插入图片描述

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	extern uint8_t USB_VCOM_BUFF[1024];
	extern uint32_t USB_VCOM_INDEX;

	extern osSemaphoreId_t USB_VCOM_BinarySem01Handle;
	extern BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;

	memcpy(USB_VCOM_BUFF+USB_VCOM_INDEX, Buf, *Len);
	xSemaphoreGiveFromISR(USB_VCOM_BinarySem01Handle, &USB_VCOM_pxHigherPriorityTaskWaken);
	USB_VCOM_INDEX += *Len;


  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
  return (USBD_OK);
  /* USER CODE END 6 */
}

在main.c的USB任务里,根据指令信息进行任务访问函数的调用和反馈:

void StartTask_TASK_USB_VCOM(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_USB_VCOM */
  BaseType_t err_stu = pdFALSE;

  UBaseType_t result = 0;

  /* Infinite loop */
  for(;;)
  {
    osDelay(10);
    USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphore
    err_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);
    if(err_stu==pdTRUE)
    {

    	if(USB_VCOM_BUFF[0]==0x01) //Get task priority
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;
    		vTaskPrioritySet(TASK_LED_FLASHHandle, result);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is set to %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		result = uxTaskGetSystemState(SB, 20, &rt);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number got is %d\r\n", result);
    		usbprintstring(TB);

    		for(uint32_t i=0; i<result;i++)
    		{
    			if(SB[i].xHandle == TASK_LED_FLASHHandle)
    			{
    	    		sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);
    	    		usbprintstring(TB);

    			  break;
    			}
    		}

    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);
    		char * TB = pvPortMalloc(1024);

    	    		sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);
    	    		usbprintstring(TB);


    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag
    	{
    		TaskHookFunction_t TV = 0;
    		char * TB = pvPortMalloc(1024);

    		BaseType_t cbf( void * param )
    		{
    			return 100;
    		}

    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );
    		usbprintstring("LED task's TAG is set to digital\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);

    		sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);
    		usbprintstring(TB);


    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );
    		usbprintstring("LED task's TAG is set to function\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);
    		sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);
    		usbprintstring(TB);

    		BaseType_t (*fp)(void);
    		fp = TV;
    		BaseType_t rv = fp();
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		vPortFree(TB);

    	}

    	if(USB_VCOM_BUFF[0]==0x06) //Get current task handle
    	{
    		TaskHandle_t th = xTaskGetCurrentTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name
    	{
    		TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle
    	{
    		TaskHandle_t th = xTaskGetIdleTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark
    	{
    		UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0A) //Get task running state
    	{
    		eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle
    	{
    		char * tn = pcTaskGetName(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's name is %s\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0C) //Get tick count
    	{
    		TickType_t tc = xTaskGetTickCount();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Tick count is %ld\r\n", tc);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state
    	{
    		BaseType_t ts = xTaskGetSchedulerState();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0E) //Get task number
    	{
    		UBaseType_t tn = uxTaskGetNumberOfTasks();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number is %ld\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskList(TB);

    		usbprintstring("Name       State   Priority   Stack   Number\r\n");
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);

    		void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);

    		sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	USB_VCOM_INDEX = 0;
    }
  }
  /* USER CODE END StartTask_TASK_USB_VCOM */
}

main.c文件的完整代码为:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Example 2: LED flash + USB VCOM with semaphore binary for task api enquiry
//Written by Pegasus Yu
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "semphr.h"
#include "task.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase = 7.63238716; //For STM32F401RCT6 working in 84MHz main clock

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;

/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
  .name = "defaultTask",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for TASK_LED_FLASH */
osThreadId_t TASK_LED_FLASHHandle;
const osThreadAttr_t TASK_LED_FLASH_attributes = {
  .name = "TASK_LED_FLASH",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_UART1 */
osThreadId_t TASK_UART1Handle;
const osThreadAttr_t TASK_UART1_attributes = {
  .name = "TASK_UART1",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_USB_VCOM */
osThreadId_t TASK_USB_VCOMHandle;
const osThreadAttr_t TASK_USB_VCOM_attributes = {
  .name = "TASK_USB_VCOM",
  .stack_size = 128 * 4,
  .priority = (osPriority_t) osPriorityLow,
};
/* Definitions for USB_VCOM_BinarySem01 */
osSemaphoreId_t USB_VCOM_BinarySem01Handle;
const osSemaphoreAttr_t USB_VCOM_BinarySem01_attributes = {
  .name = "USB_VCOM_BinarySem01"
};
/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
void StartDefaultTask(void *argument);
void StartTask_TASK_LED_FLASH(void *argument);
void StartTask_TASK_UART1(void *argument);
void StartTask_TASK_USB_VCOM(void *argument);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
void usbprintstring(char * data)
{
	if(CDC_Transmit_FS((uint8_t *)data, strlen(data))==USBD_BUSY)
	{
		PY_Delay_us_t(1000000);
	    CDC_Transmit_FS((uint8_t *)data, strlen(data));
	}
}

void usbprintarray(uint8_t * data, uint16_t len)
{
	if(CDC_Transmit_FS(data, len)==USBD_BUSY)
	{
		PY_Delay_us_t(1000000);
		CDC_Transmit_FS(data, len);
	}
}

uint8_t USB_VCOM_BUFF[1024];
uint32_t USB_VCOM_INDEX = 0;

BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;
TickType_t USB_VCOM_xBlockTime = 0;

BaseType_t testfun(void)
{
	return 0x55;
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Init scheduler */
  osKernelInitialize();

  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes, ... */
  /* USER CODE END RTOS_MUTEX */

  /* Create the semaphores(s) */
  /* creation of USB_VCOM_BinarySem01 */
  USB_VCOM_BinarySem01Handle = osSemaphoreNew(1, 0, &USB_VCOM_BinarySem01_attributes);

  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */

  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones, ... */
  /* USER CODE END RTOS_TIMERS */

  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */

  /* Create the thread(s) */
  /* creation of defaultTask */
  defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);

  /* creation of TASK_LED_FLASH */
  TASK_LED_FLASHHandle = osThreadNew(StartTask_TASK_LED_FLASH, NULL, &TASK_LED_FLASH_attributes);

  /* creation of TASK_UART1 */
  TASK_UART1Handle = osThreadNew(StartTask_TASK_UART1, NULL, &TASK_UART1_attributes);

  /* creation of TASK_USB_VCOM */
  TASK_USB_VCOMHandle = osThreadNew(StartTask_TASK_USB_VCOM, NULL, &TASK_USB_VCOM_attributes);

  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */

  /* USER CODE BEGIN RTOS_EVENTS */
  /* add events, ... */
  /* USER CODE END RTOS_EVENTS */

  /* Start scheduler */
  osKernelStart();

  /* We should never get here as control is now taken by the scheduler */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Stream2_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 5, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : LED_Pin */
  GPIO_InitStruct.Pin = LED_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/* USER CODE BEGIN Header_StartDefaultTask */
/**
  * @brief  Function implementing the defaultTask thread.
  * @param  argument: Not used
  * @retval None
  */
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
  /* init code for USB_DEVICE */
  MX_USB_DEVICE_Init();
  /* USER CODE BEGIN 5 */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END 5 */
}

/* USER CODE BEGIN Header_StartTask_TASK_LED_FLASH */
/**
* @brief Function implementing the TASK_LED_FLASH thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_LED_FLASH */
void StartTask_TASK_LED_FLASH(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_LED_FLASH */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1000);
    HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);
  }
  /* USER CODE END StartTask_TASK_LED_FLASH */
}

/* USER CODE BEGIN Header_StartTask_TASK_UART1 */
/**
* @brief Function implementing the TASK_UART1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_UART1 */
void StartTask_TASK_UART1(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_UART1 */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END StartTask_TASK_UART1 */
}

/* USER CODE BEGIN Header_StartTask_TASK_USB_VCOM */
/**
* @brief Function implementing the TASK_USB_VCOM thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_USB_VCOM */
void StartTask_TASK_USB_VCOM(void *argument)
{
  /* USER CODE BEGIN StartTask_TASK_USB_VCOM */
  BaseType_t err_stu = pdFALSE;

  UBaseType_t result = 0;

  /* Infinite loop */
  for(;;)
  {
    osDelay(10);
    USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphore
    err_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);
    if(err_stu==pdTRUE)
    {

    	if(USB_VCOM_BUFF[0]==0x01) //Get task priority
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1
    	{
    		result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;
    		vTaskPrioritySet(TASK_LED_FLASHHandle, result);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "LED task's priority is set to %d\r\n", result);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		result = uxTaskGetSystemState(SB, 20, &rt);
    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number got is %d\r\n", result);
    		usbprintstring(TB);

    		for(uint32_t i=0; i<result;i++)
    		{
    			if(SB[i].xHandle == TASK_LED_FLASHHandle)
    			{
    	    		sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);
    	    		usbprintstring(TB);

    			  break;
    			}
    		}

    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status
    	{
            uint32_t rt = 0;
    		TaskStatus_t * SB = pvPortMalloc(1024);
    		vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);
    		char * TB = pvPortMalloc(1024);

    	    		sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);
    	    		usbprintstring(TB);

    	    		sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);
    	    		usbprintstring(TB);


    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag
    	{
    		TaskHookFunction_t TV = 0;
    		char * TB = pvPortMalloc(1024);

    		BaseType_t cbf( void * param )
    		{
    			return 100;
    		}

    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );
    		usbprintstring("LED task's TAG is set to digital\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);

    		sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);
    		usbprintstring(TB);


    		vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );
    		usbprintstring("LED task's TAG is set to function\r\n");
    		TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);
    		sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);
    		usbprintstring(TB);

    		BaseType_t (*fp)(void);
    		fp = TV;
    		BaseType_t rv = fp();
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);
    		sprintf(TB, "Function return value is %d\r\n", rv);
    		usbprintstring(TB);

    		vPortFree(TB);

    	}

    	if(USB_VCOM_BUFF[0]==0x06) //Get current task handle
    	{
    		TaskHandle_t th = xTaskGetCurrentTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name
    	{
    		TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle
    	{
    		TaskHandle_t th = xTaskGetIdleTaskHandle();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark
    	{
    		UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0A) //Get task running state
    	{
    		eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle
    	{
    		char * tn = pcTaskGetName(TASK_LED_FLASHHandle);

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Led task's name is %s\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0C) //Get tick count
    	{
    		TickType_t tc = xTaskGetTickCount();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Tick count is %ld\r\n", tc);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state
    	{
    		BaseType_t ts = xTaskGetSchedulerState();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0E) //Get task number
    	{
    		UBaseType_t tn = uxTaskGetNumberOfTasks();

    		char * TB = pvPortMalloc(1024);
    		sprintf(TB, "Task number is %ld\r\n", tn);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskList(TB);

    		usbprintstring("Name       State   Priority   Stack   Number\r\n");
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read
    	{
    		char * TB = pvPortMalloc(1024);
    		vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);

    		void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);

    		sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);
    		usbprintstring(TB);
    		vPortFree(TB);
    	}

    	USB_VCOM_INDEX = 0;
    }
  }
  /* USER CODE END StartTask_TASK_USB_VCOM */
}

/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM1 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */

  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM1) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */

  /* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */



手动调整的代码

有几处的配置调整,需要手动进行:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

例程下载

STM32 STM32CUBEIDE FreeRTOS操作教程(十三):stask api 任务访问函数 例程

例程测试

例程测试效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/977523.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络安全扫描--基础篇

前言 1、了解互联网安全领域中日趋重要的扫描技术 2、了解在不同网络场景下扫描技术手段 3、熟悉linux下系统内核防护策略并能大件一个有效的系统防护体系 4、增强工作安全意识&#xff0c;并能有效的实践于工作场景中 目录 1、熟悉主机扫描工具&#xff08;fping&#xff0c;…

品融电商解读:小红书KOC打法如何重构品牌增长新路径

品融电商解读&#xff1a;小红书KOC打法如何重构品牌增长新路径 在内容生态高度饱和的今天&#xff0c;品牌若想在小红书等平台实现破局&#xff0c;仅依赖“产品为王”的单一逻辑已远远不够。作为国内头部的小红书代运营公司&#xff0c;品融电商观察到&#xff0c;平台的竞…

【原创工具】文件清单生成器 By怜渠客

【原创工具】文件清单生成器 By怜渠客 刚在论坛看到了一个文件列表生成器 文件列表生成器 - 吾爱破解 - 52pojie.cn &#xff0c;和我去年写的一个软件很像&#xff0c;当时我也是有需求&#xff0c;要把一个文件夹里及其子文件夹里所有的文件列出来&#xff0c;就临时弄了个小…

深度学习-6.用于计算机视觉的深度学习

Deep Learning - Lecture 6 Deep Learning for Computer Vision 简介深度学习在计算机视觉领域的发展时间线 语义分割语义分割系统的类型上采样层语义分割的 SegNet 架构软件中的SegNet 架构数据标注 目标检测与识别目标检测与识别问题两阶段和一阶段目标检测与识别两阶段检测器…

力扣-动态规划-746 使用最小花费爬楼梯

思路 dp数组定义&#xff1a;爬到第i层楼梯最小消耗dp[i]的费用递推公式&#xff1a;dp数组初始化&#xff1a;dp[0] 0, dp[1] 0;遍历顺序&#xff1a;顺序遍历时间复杂度&#xff1a; 代码 class Solution { public:int minCostClimbingStairs(vector<int>&am…

智慧后勤的消防管理:豪越科技为安全护航

智慧后勤消防管理难题大揭秘&#xff01; 在智慧后勤发展得如火如荼的当下&#xff0c;消防管理却暗藏诸多难题。传统模式下&#xff0c;消防设施分布得那叫一个散&#xff0c;就像一盘散沙&#xff0c;管理起来超费劲。人工巡检不仅效率低&#xff0c;还容易遗漏&#xff0c;不…

Linux中的cgdb的基本使用

1.cgdb的简介 Linux中的cgdb是一个基于GDB&#xff08;GNU Debugger&#xff09;的图形化调试前端&#xff0c;它结合了GDB的命令行界面功能和代码查看窗口&#xff0c;为开发者提供了一个更为直观的调试体验。 cgdb的作用和功能&#xff1a; 直观调试体验&#xff1a;cgdb提供…

欧拉回路与哈密尔顿回路: Fleury算法与Hierholzer 算法(C++)

图论中的回路是指一个路径, 它从某个顶点开始, 经过所有边恰好一次, 并回到起始顶点. 定义 欧拉回路: 从一个顶点出发, 经过每条边恰好一次, 并且最终回到起始顶点. 哈密尔顿回路: 从一个顶点出发, 经过每个顶点恰好一次, 并且最终回到起始顶点. 欧拉路径: 从一个顶点出发, …

数据结构 之 【无头单向非循环链表】(C语言实现)

下面将 无头单向非循环链表 简称为 单链表 头指针&#xff1a;指向链表第一个节点的指针 链表为空时&#xff0c;头指针也为空 要实现单链表&#xff0c;就是要实现单链表的 增删查改 一、无头单向非循环链表的c语言实现 1.准备工作 #include <stdio.h> #include <s…

傅里叶变换+注意力机制!CCF-A离你并不遥远!

今天给大家推荐一个&#xff0c;创新Top且热度持续攀升的方向&#xff1a;傅里叶变换注意力机制&#xff01; 傅里叶变换能够捕捉到频域的特征&#xff0c;而注意力机制则能使模型专注任务相关信息。两者结合&#xff0c;不仅能提升模型的性能和效率&#xff0c;还能增强模型的…

【学习笔记】计算机网络(四)

第4章 网络层 文章目录 第4章 网络层4.1 网络层的几个重要概念4.1.1 网络层提供的两种服务虚电路服务&#xff08;Virtual Circuit Service&#xff09;数据报服务&#xff08;Datagram Service&#xff09; 4.1.2 网络层的两个层面 4.2 网际协议 IP - IPv44.2.1 虚拟互连网络4…

Ollama部署本地大模型DeepSeek-R1-Distill-Llama-70B

文章目录 一、下模二、转模1. 下载转换工具2. 安装环境依赖3. llama.cpp1. 转换脚本依赖2. llama.cpp安装依赖包3. llama.cpp编译安装4. 格式转换 三、Ollama部署1. 安装启动Ollama2. 添加模型3. 测试运行 一、下模 #模型下载 from modelscope import snapshot_download model…

【GPT】从GPT1到GPT3

every blog every motto: Although the world is full of suffering&#xff0c; it is full also of the overcoming of it 0. 前言 从GPT1 到GPT3 1. GPT1 论文&#xff1a; https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/lan…

stm32使用(无线串口)实现收发、判断数据+DMA(HAL库)

目录 前言&#xff1a; 1. 用CubeMX配置串口DMA所需要的环境 &#xff08;1&#xff09;打开CubeMAX&#xff0c;点击红框 &#xff08;2&#xff09;查找stm32F103C8T6的芯片 &#xff08;3&#xff09;配置SYS &#xff08;4&#xff09;配置RCC时钟 &#xff08;5&am…

QT入门--QMainWindow

从上向下依次是菜单栏&#xff0c;工具栏&#xff0c;铆接部件&#xff08;浮动窗口&#xff09;&#xff0c;状态栏&#xff0c;中心部件 菜单栏 创建菜单栏 QMenuBar* mybar1 menuBar(); 将菜单栏放到窗口中 setMenuBar(mybar1); 创建菜单 QMenu *myfilemenu mybar1-…

重构清洁想象,石头科技首创五轴仿生机械手打破传统清洁边界

2月25日&#xff0c;主题为“重构清洁想象”的石头科技2025发布会在上海天文馆正式召开。石头科技清洁产品BU总裁钱启杰在会上宣布&#xff0c;石头科技正式成为上海天文馆授权合作伙伴&#xff0c;希望借助航天科技到家庭科技的跨越&#xff0c;进一步简化家庭清洁工作&#x…

Amazon Outposts:构建混合云的安全堡垒,让数据安全“零距离”

在数字化转型的浪潮中&#xff0c;企业纷纷拥抱混合云架构以兼顾敏捷性与本地化需求。然而&#xff0c;如何确保数据在本地与云端的无缝流转中始终安全可控&#xff0c;成为企业面临的核心挑战。Amazon Outposts 作为AWS推出的混合云解决方案&#xff0c;不仅将原生AWS服务延伸…

详解Redis如何持久化

引言 本文介绍了 Redis 的两种持久化方式&#xff1a;RDB 和 AOF。RDB 按时间间隔快照存储&#xff0c;AOF 记录写操作。阐述了它们的配置、工作原理、恢复数据的方法、性能与实践建议&#xff0c;如降低 fork 频率、控制内存等&#xff0c;还提到二者可配合使用&#xff0c;最…

【Ambari】Ranger KMS

目录 一、Ranger KMS介绍 二、KMS基于Ranger插件安装 一、Ranger KMS介绍 Ranger KMS是把数据存储入后台数据库中。通过Ranger Admin可以集中化管理KMS服务。 Ranger KMS有三个优点 l Key management Ranger admin 提供了创建&#xff0c;更新&#xff0c;删除密钥的Web UI…

vscode设置终端复制快捷键(有坑!!!)

vscode的编辑页面和终端的复制粘贴快捷键是不一样的。 vscode的终端复制快捷键为ctrlshiftC&#xff0c;当然&#xff0c;自己可以自定义设置 vscode设置终端复制快捷键&#xff08;有坑&#xff01;&#xff01;&#xff01;&#xff09;_vs code 不能复制-CSDN博客文章浏览…