基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a/matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

......................................................................... 
X       = woa_idx;
%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')

rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差

title(sprintf('WOA-biLSTM分析-RMSE=%.3f', rmse));

save R3.mat Ypred Ytest rmse Rmsev
207

4.算法理论概述

        LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

       BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

       这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

       在本课题中,将woa应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

       1.随机初始化一群鲸鱼的位置,每个鲸鱼的位置对应一组 BiLSTM 的参数(如权重和偏置)。

       2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常用的适应度函数是均方误差(MSE):

       使用优化后的 BiLSTM 参数在训练集上进行最终训练。使用训练好的模型对测试集进行预测,并将预测结果进行反归一化处理,得到最终的预测值。WOA 具有较强的全局搜索能力,能够在参数空间中寻找最优的 BiLSTM 参数,避免陷入局部最优解。

       在大多数序列预测任务中,BiLSTM的预测精度优于LSTM。因为它能更全面地捕捉序列中的长期依赖关系,减少信息丢失,从而提高预测准确性。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/975461.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DeepSeek R1本地+私有云版医疗AI部署开发成功案例技术剖析

1. 引言 1.1 研究背景与意义 随着科技的飞速发展,人工智能(AI)在医疗领域的应用正逐渐成为推动医疗行业变革的重要力量。近年来,医疗 AI 取得了显著的进展,从疾病诊断、药物研发到医疗管理等各个环节,AI 技术都展现出了巨大的潜力。它能够处理和分析海量的医疗数据,为…

【行业解决方案篇十八】【DeepSeek航空航天:故障诊断专家系统 】

引言:为什么说这是“航天故障终结者”? 2025年春节刚过,航天宏图突然官宣"DeepSeek已在天权智能体上线",这个搭载在卫星和空间站上的神秘系统,号称能提前48小时预判99.97%的航天器故障。这不禁让人想起年初NASA禁用DeepSeek引发的轩然大波,更让人好奇:这套系…

四步彻底卸载IDEA!!!

各位看官早安午安晚安呀 如果您觉得这篇文章对您有帮助的话 欢迎您一键三连,小编尽全力做到更好 欢迎您分享给更多人哦 大家好,我们今天来学习四步彻底卸载IDEA!!! 首先我要提醒各位 如果你想删除 IDEA 相关&#xf…

Codes 开源免费研发项目管理平台 2025年第一个大版本3.0.0 版本发布及创新的轻IPD实现

Codes 简介 Codes 是国内首款重新定义 SaaS 模式的开源项目管理平台,支持云端认证、本地部署、全部功能开放,并且对 30 人以下团队免费。它通过创新的方式简化研发协同工作,使敏捷开发更易于实施。并提供低成本的敏捷开发解决方案&#xff0…

BIRCH算法深度解析与实践指南

一、算法全景视角 BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)是首个针对超大规模数据集的聚类算法,可在有限内存下高效处理十亿级数据。其核心创新在于采用CF Tree数据结构,将数据压缩为多级聚类特征…

更改conda 环境默认安装位置

一、找到".condarc" Windows 下&#xff0c;~/.condarc 文件通常位于 C:\Users\<你的用户名>\.condarc 二、修改内容 在.condarc 里添加上 envs_dirs:- D:\ProgramData\anaconda3\envs- C:\Users\<你的用户名>\.condarc &#xff08;第一个优先&…

vue怎么设置允许局域网手机访问

打开vite.config.ts 添加 server: {host: 0.0.0.0}, host: 0.0.0.0&#xff1a;设置为0.0.0.0&#xff0c;允许从所有IP访问。port: 5173&#xff1a;指定端口号&#xff0c;可以根据需要进行修改。不指定默认 5173disableHostCheck: true&#xff1a;禁用主机检查&#xff0c…

【Git 学习笔记_27】DIY 实战篇:利用 DeepSeek 实现 GitHub 的 GPG 秘钥创建与配置

文章目录 1 前言2 准备工作3 具体配置过程3.1. 本地生成 GPG 密钥3.2. 导出 GPG 密钥3.3. 将密钥配置到 Git 中3.4. 测试提交 4 问题排查记录5 小结与复盘 1 前言 昨天在更新我的第二个 Vim 专栏《Mastering Vim (2nd Ed.)》时遇到一个经典的 Git 操作问题&#xff1a;如何在 …

为什么继电器要加一个反向并联一个二极管

1 动感就是电流不突变 2 为什么有的继电器上面要反向并联一个二极管和电阻 1 并联二极管是为消除掉动感产生的高压 2 加上二极管是为了让继电器更快的断开&#xff08;二极管选型的工作电流要大于动感电流&#xff0c;开关要够快&#xff09; 3 公式&#xff1a;二极管压降0…

每日精讲:删除有序数组中的重复项,移除元素,合并两个有序数组

一 移除元素 1题目链接&#xff1a;27. 移除元素 - 力扣&#xff08;LeetCode&#xff09; 2题目描述&#xff1a; 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数…

Docker-技术架构演进之路

目录 一、概述 常见概念 二、架构演进 1.单机架构 2.应用数据分离架构 3.应用服务集群架构 4.读写分离 / 主从分离架构 5.引入缓存 —— 冷热分离架构 6.垂直分库 7.业务拆分 —— 微服务 8.容器化引入——容器编排架构 三、尾声 一、概述 在进行技术学习过程中&am…

关于使用带elementplus前缀图标的步骤

关于使用带elementplus前缀图标的步骤 官网 安装 | Element Plus 1.需要全局注册 2.使用某个图标时导入&#xff0c; 如 import { Search } from element-plus/icons-vue

DPVS-3: 双臂负载均衡测试

测试拓扑 双臂模式&#xff0c; 使用两个网卡&#xff0c;一个对外&#xff0c;一个对内。 Client host是物理机&#xff0c; RS host都是虚拟机。 LB host是物理机&#xff0c;两个CX5网卡分别在两个子网。 配置文件 用dpvs.conf.sample作为双臂配置文件&#xff0c;其中…

买股票的最佳时机 - 2

买卖股票的最佳时机 III 题目描述&#xff1a; 提示&#xff1a; 1 < prices.length < 1050 < prices[i] < 105 分析过程&#xff1a; 写动态规划&#xff0c;我们需要考虑一下问题&#xff1a; 定义状态状态转移方程初始条件 遍历顺序 4种状态&#xff1a; …

数据分析与算法设计-作业2-拉普拉斯算子空间滤波和增强

作业2 题目 对Flower.dat图像&#xff08;10241024&#xff0c;np.uint8&#xff09;用如下拉普拉斯算子进行空间滤波和增强&#xff1a;np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])&#xff0c;图像边缘采用复制填充方式&#xff0c;不使用其他第三方库&#xff0c;使…

SpringBoot+Vue+微信小程序的猫咖小程序平台(程序+论文+讲解+安装+调试+售后)

感兴趣的可以先收藏起来&#xff0c;还有大家在毕设选题&#xff0c;项目以及论文编写等相关问题都可以给我留言咨询&#xff0c;我会一一回复&#xff0c;希望帮助更多的人。 系统介绍 在当下这个高速发展的时代&#xff0c;网络科技正以令人惊叹的速度不断迭代更新。从 5G …

基于SpringBoot的二手交易系统

系统展示 用户前台界面 管理员后台界面 系统背景 在当今社会&#xff0c;随着电子商务的蓬勃发展和人们消费观念的转变&#xff0c;二手物品交易逐渐成为了一种新的生活方式。人们越来越倾向于将不再需要的物品进行二次交易&#xff0c;以实现资源的有效利用和环保理念的实践。…

vscode无法预览Markdown在线图片链接

问题&#xff1a;在VSCode中&#xff0c;打开MarkDown文件&#xff0c;存在在线图片链接&#xff0c; 但是在预览时却无法显示。 原因&#xff1a;因为Visual Studio Code中的MarkDown默认配置中只允许载入安全内容 解决方法&#xff1a; 1、输入快捷键 Ctrl Shift P 打开…

Power Query M函数

文章目录 三、PQ高阶技能&#xff1a;M函数3.1 M函数基本概念3.1.1 表达式和值3.1.2 计算3.1.3 运算符3.1.4 函数3.1.5 元数据3.1.6 Let 表达式3.1.6 If 表达式3.1.7 Error 3.2 自定义M函数3.2.1 语法3.2.2 调用定义好的自定义函数3.2.3 直接调用自定义函数3.2.4 自定义函数&am…

election靶机渗透测试

发现靶机ip地址 使用nmap进行扫描端口发现详细信息nmap -T4 -sV -sC -p- 192.168.52.142 用dirsearch扫一下网站的目录 看到一个phpinfo 一个phpmyadmin的登录页面 robots.txt文件 看一下这个election目录下并没有发现什么 继续进行目录扫描&#xff0c;这时候看到一个admin的l…