Linux 驱动入门(6)—— IRDA(红外遥控模块)驱动

文章目录

  • 一、编译替换内核和设备树
  • 二、IRDA(红外遥控模块)
    • 1. 红外遥控简介
    • 2. 红外遥控器协议
    • 3. 编程思路
  • 三、驱动代码
    • 1. GPIO 实现
      • 1.1 驱动层代码
      • 1.2 应用层代码
    • 2. 设备树实现
      • 2.1 修改设备树
      • 2.2 驱动层代码
      • 2.3 应用层代码
    • 3. 上机测试

一、编译替换内核和设备树

在编译驱动程序之前要先编译内核,原因有三点:

  • 驱动程序要用到内核文件
  • 编译驱动时用的内核、开发板上运行到内核,要一致
  • 更换板子上的内核后,板子上的其他驱动也要更换

编译内核步骤看我之前写过的文章:

  • 编译替换内核_设备树_驱动_IMX6ULL

二、IRDA(红外遥控模块)

1. 红外遥控简介

红外遥控被广泛应用于家用电器、工业控制和智能仪器系统中,像我们熟知的有电视机盒子遥控器、空调遥控器。红外遥控器系统分为发送端和接收端,如图下图所示:
在这里插入图片描述
发送端就是红外遥控器,上面有许多按键,当我们按下遥控器按键时,遥控器内部电路会进行编码和调制,再通过红外发射头,将信号以肉眼不可见的红外线发射出去。红外线线虽然肉眼不可见,但可以通过手机摄像头看到,常用该方法检查遥控器是否正常工作。
接收端是一个红外接收头,收到红外信号后,内部电路会进行信号放大和解调,再将数据传给板子上的 GPIO,板子收到数据后再解码才能确定是哪个按键被按下。

2. 红外遥控器协议

我们按下遥控器按键的时候,遥控器自动发送某个红外信号,接收头接收到红外信号,然后把红外信号转换成电平信号,通过IRD这根线,传给SOC。整个传输,只涉及单向传输,由HS0038向主芯片传送。
因此,我们只需要编写程序,从IRD上获取数据即可,在这之前,我们需要先了解下数据是怎么表示的,也就是传输的红外数据的格式。
红外协议有:NEC、SONY、RC5、RC6等,常用的就是NEC格式,因此我们主要对NEC进行讲解。 在分析文章中的波形之前,我们先想象一下怎么在一条数据线上传输信号。 开始传输数据之前,一般都会发出一个 start 起始信号,通知对方我开始传输数据了,后面就是每一位每一位的数据。
NEC 协议的开始是一段引导码:
在这里插入图片描述
这个引导码由一个9ms的低脉冲加上一个4.5ms的高脉冲组成,它用来通知接收方我要开始传输数据了。
在这里插入图片描述
然后接着的是数据,数据由4字节组成:地址、地址(取反)、数据、数据(取反),取反是用来校验用的。
地址是指遥控器的ID,每一类遥控器的ID都不一样,这样就可以防止操控
电视的遥控器影响空调。数据就是遥控器上的不同按键值。
从前面的图可以知道,NEC每次要发32位(地址、地址取反、数据、数据取反,每个8位)的数据。数据的1和0,开始都是0.56ms的低脉冲,对于数据1,后面的高脉冲比较长,对于数据0,后面的高脉冲比较短。
在这里插入图片描述
第一次按下按键时,它会发出引导码,地址,地址取反,数据,数据取反。
如果这时还没松开按键,这就是“长按”,怎么表示“长按”?遥控器会发送一个不一样的引导码,这个引导码由9ms 的低脉冲,2.25ms 的高脉冲组成,表示现在按的还是上次一样的按键,也叫连发码,它会一直发送,直到松开。
在这里插入图片描述

3. 编程思路

知道红外遥控器协议后就可以开始编写程序了。
编程思路如下:

  • 平时GPIO为高;
  • 发现GPIO为低时,判断它有9ms的低电平;
    对于引导码,或连发码,它们都有9ms的低电平,如下图:
    在这里插入图片描述
  • 分辨是引导码,还是连发码:
    在 9ms 的低电平之后,判断高电平持续时间,引导码的高电平维持时间是4.5ms,连发码的高电平维持时间是2.25ms。
    发现是连发码时,直接结束译码。
    发现是引导码时,还得继续接收32位数据。
  • 接收数据:
    关键在于如何得到一位数据,看看下图:
    在这里插入图片描述
    先等待低电平结束,一直等到出现高电平;然后延时800us,读取GPIO值:这就是该位的数据值。

三、驱动代码

实现步骤:

  • 1.记录中断发生的时刻;
  • 2.累计中断次数;
  • 3.次数达标后, 删除定时器, 解析数据, 放入buffer, 唤醒APP;

1. GPIO 实现

1.1 驱动层代码

irda_drv.c

#include "asm-generic/errno-base.h"
#include "linux/jiffies.h"
#include <linux/module.h>
#include <linux/poll.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

struct gpio_desc{
	int gpio;
	int irq;
    char *name;
    int key;
	struct timer_list key_timer;
} ;

static struct gpio_desc gpios[] = {
    {115, 0, "irda", },
};

/* 主设备号       */
static int major = 0;
static struct class *gpio_class;

/* 环形缓冲区 */
#define BUF_LEN 128
static unsigned char g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

static u64 g_irda_irq_times[68];
static int g_irda_irq_cnt = 0;

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(unsigned char key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static unsigned char get_key(void)
{
	unsigned char key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}


static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);

// static void key_timer_expire(struct timer_list *t)
static void key_timer_expire(unsigned long data)
{
	/* 超时 */
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
}


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t irda_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	unsigned char kern_buf[2] ;
	int err;

	if (size != 2)
		return -EINVAL;

	if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
		return -EAGAIN;
	
	wait_event_interruptible(gpio_wait, !is_key_buf_empty());
	kern_buf[0] = get_key();  /* device */
	kern_buf[1] = get_key();  /* data   */

	if (kern_buf[0] == (unsigned char)-1  && kern_buf[1] == (unsigned char)-1)
		return -EIO;

	err = copy_to_user(buf, kern_buf, 2);
	
	return 2;
}


/* 定义自己的file_operations结构体            */
static struct file_operations irda_fops = {
	.owner	 = THIS_MODULE,
	.read    = irda_read,
};

static void parse_irda_datas(void)
{
	u64 time;
	int i;
	int m, n;
	unsigned char datas[4];
	unsigned char data = 0;
	int bits = 0;
	int byte = 0;

	/* 1. 判断前导码 : 9ms的低脉冲, 4.5ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		goto err;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 3500000 || time > 55000000)
	{
		goto err;
	}

	/* 2. 解析数据 */
	for (i = 0; i < 32; i++)
	{
		m = 3 + i*2;
		n = m+1;
		time = g_irda_irq_times[n] - g_irda_irq_times[m];
		data <<= 1;
		bits++;
		if (time > 1000000)
		{
			/* 得到了数据1 */
			data |= 1;
		}

		if (bits == 8)
		{
			datas[byte] = data;
			byte++;
			data = 0;
			bits = 0;
		}
	}

	/* 判断数据正误 */
	datas[1] = ~datas[1];
	datas[3] = ~datas[3];
	
	if ((datas[0] != datas[1]) || (datas[2] != datas[3]))
	{
		printk("data verify err: %02x %02x %02x %02x\n", datas[0], datas[1], datas[2], datas[3]);
		goto err;
	}

	put_key(datas[0]);
	put_key(datas[2]);
	wake_up_interruptible(&gpio_wait);
	return;

err:
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
}

static int get_irda_repeat_datas(void)
{
	u64 time;

	/* 1. 判断重复码 : 9ms的低脉冲, 2.25ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		return -1;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 2000000 || time > 2500000)
	{
		return -1;
	}	

	return 0;
}

static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
	struct gpio_desc *gpio_desc = dev_id;
	u64 time;
	
	/* 1. 记录中断发生的时刻 */	
	time = ktime_get_ns();
	g_irda_irq_times[g_irda_irq_cnt] = time;

	/* 2. 累计中断次数 */
	g_irda_irq_cnt++;

	/* 3. 次数达标后, 删除定时器, 解析数据, 放入buffer, 唤醒APP */
	if (g_irda_irq_cnt == 4)
	{
		/* 是否重复码 */
		if (0 == get_irda_repeat_datas())
		{
			/* device: 0, val: 0, 表示重复码 */
			put_key(0);
			put_key(0);
			wake_up_interruptible(&gpio_wait);
			kill_fasync(&button_fasync, SIGIO, POLL_IN);
			del_timer(&gpio_desc->key_timer);
			g_irda_irq_cnt = 0;
			return IRQ_HANDLED;
		}
	}
	if (g_irda_irq_cnt == 68)
	{
		parse_irda_datas();
		del_timer(&gpio_desc->key_timer);
		g_irda_irq_cnt = 0;
		return IRQ_HANDLED;
	}

	/* 4. 启动定时器 */
	mod_timer(&gpio_desc->key_timer, jiffies + msecs_to_jiffies(100));
	return IRQ_HANDLED;
}


/* 在入口函数 */
static int __init irda_init(void)
{
    int err;
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	for (i = 0; i < count; i++)
	{		
		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);

		setup_timer(&gpios[i].key_timer, key_timer_expire, (unsigned long)&gpios[i]);
	 	//timer_setup(&gpios[i].key_timer, key_timer_expire, 0);
		err = request_irq(gpios[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[i].name, &gpios[i]);
	}

	/* 注册file_operations 	*/
	major = register_chrdev(0, "zgl_irda", &irda_fops);  /* /dev/gpio_desc */

	gpio_class = class_create(THIS_MODULE, "zgl_irda_class");
	if (IS_ERR(gpio_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "zgl_irda");
		return PTR_ERR(gpio_class);
	}

	device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "irda"); /* /dev/irda */
	
	return err;
}

/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数
 */
static void __exit irda_exit(void)
{
    int i;
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	device_destroy(gpio_class, MKDEV(major, 0));
	class_destroy(gpio_class);
	unregister_chrdev(major, "zgl_irda");

	for (i = 0; i < count; i++)
	{
		free_irq(gpios[i].irq, &gpios[i]);
		del_timer(&gpios[i].key_timer);
	}
}


/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(irda_init);
module_exit(irda_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("zgl <919426896@qq.com>");

1.2 应用层代码

irda_test.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>

static int fd;

/*
 * ./irda_test /dev/irda
 *
 */
int main(int argc, char **argv)
{
	unsigned char buf[2];
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}


	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	while (1)
	{
		if (read(fd, buf, 2) == 2)
			printf("get irda: deivce 0x%02x, data 0x%02x\n", buf[0], buf[1]);
		else
			printf("get irda: -1\n");
	}

	close(fd);
	
	return 0;
}

2. 设备树实现

2.1 修改设备树

在这里插入图片描述

2.2 驱动层代码

irda_drv.c

#include "asm-generic/errno-base.h"
#include "linux/jiffies.h"
#include <linux/module.h>
#include <linux/poll.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

struct gpio_desc{
	int gpio;
	int irq;
    char name[128];
    int key;
	struct timer_list key_timer;
} ;

static int count;
static struct gpio_desc *gpios;


/* 主设备号       */
static int major = 0;
static struct class *gpio_class;

/* 环形缓冲区 */
#define BUF_LEN 128
static unsigned char g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

static u64 g_irda_irq_times[68];
static int g_irda_irq_cnt = 0;

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(unsigned char key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static unsigned char get_key(void)
{
	unsigned char key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}


static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);

// static void key_timer_expire(struct timer_list *t)
static void key_timer_expire(unsigned long data)
{
	/* 超时 */
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
}


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t irda_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	unsigned char kern_buf[2] ;
	int err;

	if (size != 2)
		return -EINVAL;

	if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
		return -EAGAIN;
	
	wait_event_interruptible(gpio_wait, !is_key_buf_empty());
	kern_buf[0] = get_key();  /* device */
	kern_buf[1] = get_key();  /* data   */

	if (kern_buf[0] == (unsigned char)-1  && kern_buf[1] == (unsigned char)-1)
		return -EIO;

	err = copy_to_user(buf, kern_buf, 2);
	
	return 2;
}


/* 定义自己的file_operations结构体            */
static struct file_operations irda_fops = {
	.owner	 = THIS_MODULE,
	.read    = irda_read,
};

static void parse_irda_datas(void)
{
	u64 time;
	int i;
	int m, n;
	unsigned char datas[4];
	unsigned char data = 0;
	int bits = 0;
	int byte = 0;

	/* 1. 判断前导码 : 9ms的低脉冲, 4.5ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		goto err;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 3500000 || time > 55000000)
	{
		goto err;
	}

	/* 2. 解析数据 */
	for (i = 0; i < 32; i++)
	{
		m = 3 + i*2;
		n = m+1;
		time = g_irda_irq_times[n] - g_irda_irq_times[m];
		data <<= 1;
		bits++;
		if (time > 1000000)
		{
			/* 得到了数据1 */
			data |= 1;
		}

		if (bits == 8)
		{
			datas[byte] = data;
			byte++;
			data = 0;
			bits = 0;
		}
	}

	/* 判断数据正误 */
	datas[1] = ~datas[1];
	datas[3] = ~datas[3];
	
	if ((datas[0] != datas[1]) || (datas[2] != datas[3]))
	{
		printk("data verify err: %02x %02x %02x %02x\n", datas[0], datas[1], datas[2], datas[3]);
		goto err;
	}

	put_key(datas[0]);
	put_key(datas[2]);
	wake_up_interruptible(&gpio_wait);
	return;

err:
	g_irda_irq_cnt = 0;
	put_key(-1);
	put_key(-1);
	wake_up_interruptible(&gpio_wait);
}

static int get_irda_repeat_datas(void)
{
	u64 time;

	/* 1. 判断重复码 : 9ms的低脉冲, 2.25ms高脉冲  */
	time = g_irda_irq_times[1] - g_irda_irq_times[0];
	if (time < 8000000 || time > 10000000)
	{
		return -1;
	}

	time = g_irda_irq_times[2] - g_irda_irq_times[1];
	if (time < 2000000 || time > 2500000)
	{
		return -1;
	}	

	return 0;
}

static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
	struct gpio_desc *gpio_desc = dev_id;
	u64 time;
	
	/* 1. 记录中断发生的时刻 */	
	time = ktime_get_ns();
	g_irda_irq_times[g_irda_irq_cnt] = time;

	/* 2. 累计中断次数 */
	g_irda_irq_cnt++;

	/* 3. 次数达标后, 删除定时器, 解析数据, 放入buffer, 唤醒APP */
	if (g_irda_irq_cnt == 4)
	{
		/* 是否重复码 */
		if (0 == get_irda_repeat_datas())
		{
			/* device: 0, val: 0, 表示重复码 */
			put_key(0);
			put_key(0);
			wake_up_interruptible(&gpio_wait);
			kill_fasync(&button_fasync, SIGIO, POLL_IN);
			del_timer(&gpio_desc->key_timer);
			g_irda_irq_cnt = 0;
			return IRQ_HANDLED;
		}
	}
	if (g_irda_irq_cnt == 68)
	{
		parse_irda_datas();
		del_timer(&gpio_desc->key_timer);
		g_irda_irq_cnt = 0;
		return IRQ_HANDLED;
	}

	/* 4. 启动定时器 */
	mod_timer(&gpio_desc->key_timer, jiffies + msecs_to_jiffies(100));
	return IRQ_HANDLED;
}



/* 在入口函数 */
static int gpio_drv_probe(struct platform_device *pdev)
{
    int err = 0;
    int i;
	struct device_node *np = pdev->dev.of_node;
	struct resource *res;
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	

	/* 从platfrom_device获得引脚信息 
	 * 1. pdev来自c文件
     * 2. pdev来自设备树
	 */
	
	if (np)
	{
		/* pdev来自设备树 : 示例
        reg_usb_ltemodule: regulator@1 {
            compatible = "100ask,gpiodemo";
            gpios = <&gpio5 5 GPIO_ACTIVE_HIGH>, <&gpio5 3 GPIO_ACTIVE_HIGH>;
        };
		*/
		count = of_gpio_count(np);
		if (!count)
			return -EINVAL;

		gpios = kmalloc(count * sizeof(struct gpio_desc), GFP_KERNEL);
		for (i = 0; i < count; i++)
		{
			gpios[i].gpio = of_get_gpio(np, i);
			sprintf(gpios[i].name, "%s_pin_%d", np->name, i);
		}
	}
	else
	{
		/* pdev来自c文件 
		static struct resource omap16xx_gpio3_resources[] = {
			{
					.start  = 115,
					.end    = 115,
					.flags  = IORESOURCE_IRQ,
			},
			{
					.start  = 118,
					.end    = 118,
					.flags  = IORESOURCE_IRQ,
			},		};		
		*/
		count = 0;
		while (1)
		{
			res = platform_get_resource(pdev, IORESOURCE_IRQ, count);
			if (res)
			{
				count++;
			}
			else
			{
				break;
			}
		}

		if (!count)
			return -EINVAL;

		gpios = kmalloc(count * sizeof(struct gpio_desc), GFP_KERNEL);
		for (i = 0; i < count; i++)
		{
			res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
			gpios[i].gpio = res->start;
			sprintf(gpios[i].name, "%s_pin_%d", pdev->name, i);
		}

	}

    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	for (i = 0; i < count; i++)
	{		
		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);

		setup_timer(&gpios[i].key_timer, key_timer_expire, (unsigned long)&gpios[i]);
	 	//timer_setup(&gpios[i].key_timer, key_timer_expire, 0);
		err = request_irq(gpios[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[i].name, &gpios[i]);
	}

	/* 注册file_operations 	*/
	major = register_chrdev(0, "zgl_irda", &irda_fops);  /* /dev/gpio_desc */

	gpio_class = class_create(THIS_MODULE, "zgl_irda_class");
	if (IS_ERR(gpio_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "zgl_irda");
		return PTR_ERR(gpio_class);
	}

	device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "irda"); /* /dev/irda */
	
	return err;

}


/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数
 */
static int gpio_drv_remove(struct platform_device *pdev)
{
    int i;
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	device_destroy(gpio_class, MKDEV(major, 0));
	class_destroy(gpio_class);
	unregister_chrdev(major, "zgl_irda");

	for (i = 0; i < count; i++)
	{
		free_irq(gpios[i].irq, &gpios[i]);
		del_timer(&gpios[i].key_timer);
	}

	return 0;
}


static const struct of_device_id gpio_dt_ids[] = {
        { .compatible = "zgl,irda", },
        { /* sentinel */ }
};

static struct platform_driver gpio_platform_driver = {
	.driver		= {
		.name	= "zgl_irda_plat_drv",
		.of_match_table = gpio_dt_ids,
	},
	.probe		= gpio_drv_probe,
	.remove		= gpio_drv_remove,
};


static int __init irda_drv_init(void)
{
	/* 注册platform_driver */
	return platform_driver_register(&gpio_platform_driver);
}

static void __exit irda_drv_exit(void)
{
	/* 反注册platform_driver */
	platform_driver_unregister(&gpio_platform_driver);
}


/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(irda_drv_init);
module_exit(irda_drv_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("zgl <919426896@qq.com>");

2.3 应用层代码

irda_test.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>

static int fd;

/*
 * ./irda_test /dev/irda
 *
 */
int main(int argc, char **argv)
{
	unsigned char buf[2];
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}


	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	while (1)
	{
		if (read(fd, buf, 2) == 2)
			printf("get irda: deivce 0x%02x, data 0x%02x\n", buf[0], buf[1]);
		else
			printf("get irda: -1\n");
	}

	close(fd);
	
	return 0;
}

3. 上机测试

开发板上电,装载驱动,运行程序测试:在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/975053.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

hot100_139. 单词拆分

hot100_139. 单词拆分 思路 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。 注意&#xff1a;不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 示例 1&#xff1a; 输入:…

ath9k(Atheros芯片)开源驱动之wifi连接

为什么会推荐这个wifi 驱动进行学习&#xff1f; ath9k&#xff08;Atheros芯片&#xff09;&#xff1a;代码结构清晰&#xff0c;适合学习实践 为什么我只在开篇写了一个wifi连接的操作&#xff1f; 先让一个开源驱动在你的硬件上跑起来&#xff0c;再逐步修改&#xff0c…

win10把c盘docker虚拟硬盘映射迁移到别的磁盘

c盘空间本身就比较小、如果安装了docker服务后&#xff0c;安装的时候没选择其他硬盘&#xff0c;虚拟磁盘也在c盘会占用很大的空间&#xff0c;像我的就三十多个G&#xff0c;把它迁移到其他磁盘一下子节约几十G 1、先输入下面命令查看 docker 状态 wsl -l -v 2、如果没有停止…

PHP课程预约小程序源码

&#x1f4f1; 课程预约小程序&#xff1a;为您专属定制的便捷预约新体验 在这个快节奏的时代&#xff0c;我们深知每一位瑜伽爱好者、普拉提追随者以及培训机构管理者对高效、便捷服务的迫切需求。因此&#xff0c;我们匠心独运&#xff0c;推出了一款基于PHPUniApp框架开发的…

Docker实战-使用docker compose搭建博客

docker run 部署 创建blog网络 [rootk8s-master ~]# docker network create blog 8f533a5a1ec65eae3f98c0ae5a76014a3ab1bf3c087ad952cdc100cc7a658948 [rootk8s-master ~]# docker network ls NETWORK ID NAME DRIVER SCOPE 8f533a5a1ec6 blog bridge …

javaEE-SpringBoot日志

一.日志的用途 平时我们使用日志,就是通过控制台打印一些信息,或者程序运行保存,查看控制台报错原因. 随着项⽬的复杂度提升, 我们对⽇志的打印也有了更⾼的需求, ⽽不仅仅是定位排查问题. ⽐如需要记录⼀些⽤⼾的操作记录(⼀些审计公司会要求), 也可能需要使⽤⽇志来记录⽤…

DeepSeek vs ChatGPT:AI 领域的华山论剑,谁主沉浮?

一、引言 在当今科技飞速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;已然成为推动各领域变革的核心力量。而在人工智能的众多分支中&#xff0c;自然语言处理&#xff08;NLP&#xff09;因其与人类日常交流和信息处理的紧密联系&#xff0c;成为了最受瞩目的领…

LangChain-基础(prompts、序列化、流式输出、自定义输出)

LangChain-基础 我们现在使用的大模型训练数据都是基于历史数据训练出来的&#xff0c;它们都无法处理一些实时性的问题或者一些在训练时为训练到的一些问题&#xff0c;解决这个问题有2种解决方案 基于现有的大模型上进行微调&#xff0c;使得它能适应这些问题&#xff08;本…

数据库面试知识点总结

目录 1. MySQL 基础题1.1 执行⼀条 select / update 语句&#xff0c;在 MySQL 中发生了什么&#xff1f;1.2 MySQL 一行记录是怎么存储的&#xff1f; 2. 三大范式3. 数据库引擎3.1 Innodb3.2 MyISAM 4. 数据库索引4.1 索引分类4.2 索引优缺点4.3 索引使用场景4.4 优化索引方法…

Spring事务原理 二

在上一篇博文《Spring事务原理 一》中&#xff0c;我们熟悉了Spring声明式事务的AOP原理&#xff0c;以及事务执行的大体流程。 本文中&#xff0c;介绍了Spring事务的核心组件、传播行为的源码实现。下一篇中&#xff0c;我们将结合案例&#xff0c;来讲解实战中有关事务的易…

使用 C++ 和 gRPC 的常见陷阱及解决方案

文章目录 1. 环境配置的陷阱1.1 依赖版本冲突或混淆1.2 gRPC 工具缺失 2. 编译和链接的陷阱2.1 运行时库不匹配&#xff08;/MT vs /MD&#xff09;2.2 未解析的外部符号 3. Protobuf 文件生成的陷阱3.1 工具版本不匹配3.2 生成文件运行时库不一致 4. 运行时的陷阱4.1 缺少 DLL…

《深度学习实战》第2集:卷积神经网络(CNN)与图像分类

《深度学习实战》第2集&#xff1a;卷积神经网络&#xff08;CNN&#xff09;与图像分类 引言 卷积神经网络&#xff08;Convolutional Neural Network, CNN&#xff09;是深度学习在计算机视觉领域的核心工具。从早期的 LeNet 到现代的 ResNet 和 Vision Transformer&#xf…

创建Linux虚拟环境并远程连接

目录 下载VMware软件 下载CentOS 创建虚拟环境 远程连接Linux系统 下载VMware软件 不会的可以参考 传送门 下载CentOS 不会的可以参考 传送门 创建虚拟环境 打开VMware软件&#xff0c;创建虚拟机 选择典型安装 找到我们安装好的centOS文件&#xff0c;之后会自动检…

RV1126解码(5) read_vdec_thread线程

read_vdec_thread线程的用处 read_vdec_thread线程主要是获取每一帧VDEC解码数据&#xff0c;并打印出来每一帧数据的具体信息。 代码&#xff1a; //用于从 VDEC 解码器获取每一帧解码后的图像数据 void *read_vdec_thread(void *args) {pthread_detach(pthread_self());MED…

verilog笔记

Verilog学习笔记&#xff08;一&#xff09;入门和基础语法BY电棍233 由于某些不可抗拒的因素和各种的特殊原因&#xff0c;主要是因为我是微电子专业的&#xff0c;我需要去学习一门名为verilog的硬件解释语言&#xff0c;由于我是在某西部地区的神秘大学上学&#xff0c;这所…

Three.js 快速入门教程【六】相机控件 OrbitControls

系列文章目录 Three.js 快速入门教程【一】开启你的 3D Web 开发之旅 Three.js 快速入门教程【二】透视投影相机 Three.js 快速入门教程【三】渲染器 Three.js 快速入门教程【四】三维坐标系 Three.js 快速入门教程【五】动画渲染循环 Three.js 快速入门教程【六】相机控件 Or…

抗辐照加固CAN FD芯片的商业航天与车规级应用解析

在工业自动化、智能汽车、航空航天及国防装备等关键领域&#xff0c;数据传输的安全性、可靠性与极端环境适应能力是技术升级的核心挑战。国科安芯推出全新一代CANFD&#xff08;Controller Area Network Flexible Data Rate&#xff09;芯片&#xff0c;以高安全、高可靠、断电…

经验分享—WEB渗透测试中遇到加密内容的数据包该如何测试!

经验分享—WEB渗透测试中遇到加密内容的数据包该如何测试&#xff01; 01 加解密的意义 现阶段的渗透测试让我发现越来越多的系统不只是在漏洞修补方面做了功夫&#xff0c;还对一些参数进行加密&#xff0c;干扰爬虫或者渗透测试的进行。 在我小白阶段看到下图这种加密方式…

在群晖上使用Docker安装思源笔记

​​ 最近一段时间&#xff0c;docker的镜像地址都失效了&#xff0c;在群晖系统中&#xff0c;无论是早期版本的docker&#xff0c;还是最新版本中的Container Manager&#xff0c;注册表中都无法链接到docker的镜像&#xff0c;于是&#xff0c;就花了点时间查找资料&#x…

网络安全营运周报

&#x1f345; 点击文末小卡片 &#xff0c;免费获取网络安全全套资料&#xff0c;资料在手&#xff0c;涨薪更快 第三章网络安全基础 一、网络安全概述 1、网络安全现状及安全挑战 网络安全范畴极其广泛&#xff0c;可以说是涉及多方面。 因为计算机病毒层出不穷以及黑客的…