深度学习4. 循环神经网络 – Recurrent Neural Network | RNN

目录

循环神经网络 – Recurrent Neural Network | RNN

为什么需要 RNN ?独特价值是什么?

RNN 的基本原理

RNN 的优化算法

RNN 到 LSTM – 长短期记忆网络

从 LSTM 到 GRU

RNN 的应用和使用场景

总结

百度百科+维基百科


循环神经网络 – Recurrent Neural Network | RNN

为什么需要 RNN ?独特价值是什么?

卷积神经网络和普通的算法大部分都是输入和输出的一一对应,也就是一个输入得到一个输出。不同的输入之间是没有联系的。

但是在某些场景中,一个输入就不够了!

为了填好下面的空,取前面任何一个词都不合适,我们不但需要知道前面所有的词,还需要知道词之间的顺序。

这种需要处理「序列数据 – 一串相互依赖的数据流」的场景就需要使用 RNN 来解决了。

典型的集中序列数据:

  1. 文章里的文字内容
  2. 语音里的音频内容
  3. 股票市场中的价格走势
  4. ……

RNN 之所以能够有效的处理序列数据,主要是基于他的比较特殊的运行原理。下面给大家介绍一下 RNN 的基本运行原理。

RNN 的基本原理

传统神经网络的结构比较简单:输入层 – 隐藏层 – 输出层。如下图所示:

传统神经网络

RNN 跟传统神经网络最大的区别在于每次都会将前一次的输出结果,带到下一次的隐藏层中,一起训练。如下图所示:

RNN区别

下面用一个具体的案例来看看 RNN 是如何工作的:

假如需要判断用户的说话意图(问天气、问时间、设置闹钟…),用户说了一句“what time is it?”我们需要先对这句话进行分词:

对输入进行分词

然后按照顺序输入 RNN ,我们先将 “what”作为 RNN 的输入,得到输出「01」

输入what,得到输出01

然后,我们按照顺序,将“time”输入到 RNN 网络,得到输出「02」。

这个过程我们可以看到,输入 “time” 的时候,前面 “what” 的输出也产生了影响(隐藏层中有一半是黑色的)。

以此类推,前面所有的输入都对未来的输出产生了影响,大家可以看到圆形隐藏层中包含了前面所有的颜色。如下图所示:

RNN 对前面输入有「记忆」作用的体现

当我们判断意图的时候,只需要最后一层的输出「05」,如下图所示:

RNN 最后一层的输出是我们最终想要的

RNN 的缺点也比较明显

隐藏层中的颜色分布

通过上面的例子,我们已经发现,短期的记忆影响较大(如橙色区域),但是长期的记忆影响就很小(如黑色和绿色区域),这就是 RNN 存在的短期记忆问题。

  1. RNN 有短期记忆问题,无法处理很长的输入序列
  2. 训练 RNN 需要投入极大的成本

由于 RNN 的短期记忆问题,后来又出现了基于 RNN 的优化算法,下面给大家简单介绍一下。

RNN 的优化算法

RNN 到 LSTM – 长短期记忆网络

RNN 是一种死板的逻辑,越晚的输入影响越大,越早的输入影响越小,且无法改变这个逻辑。

LSTM 做的最大的改变就是打破了这个死板的逻辑,而改用了一套灵活了逻辑——只保留重要的信息。

简单说就是:抓重点!(很多核心算法就是改权重:抓大放小)

举个例子,我们先快速的阅读下面这段话:

当我们快速阅读完之后,可能只会记住下面几个重点:

 

LSTM 类似上面的划重点,他可以保留较长序列数据中的「重要信息」,忽略不重要的信息。这样就解决了 RNN 短期记忆的问题。

从 LSTM 到 GRU

Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

GRU 主要是在LSTM的模型上做了一些简化和调整

GRU 主要是在 LSTM 的模型上做了一些简化和调整,在训练数据集比较大的情况下可以节省很多时间。

RNN 的应用和使用场景

只要涉及到序列数据的处理问题,都可以使用到,NLP 就是一个典型的应用场景。

RNN的应用和使用场景

文本生成:类似上面的填空题,给出前后文,然后预测空格中的词是什么。

机器翻译:翻译工作也是典型的序列问题,词的顺序直接影响了翻译的结果。

语音识别:根据输入音频判断对应的文字是什么。

生成图像描述:类似看图说话,给一张图,能够描述出图片中的内容。这个往往是 RNN 和 CNN 的结合。

 

视频标记:他将视频分解为图片,然后用图像描述来描述图片内容。

总结

RNN的独特价值在于:它能有效的处理序列数据。比如:文章内容、语音音频、股票价格走势…

之所以他能处理序列数据,是因为在序列中前面的输入也会影响到后面的输出,相当于有了“记忆功能”。但是 RNN 存在严重的短期记忆问题,长期的数据影响很小(哪怕他是重要的信息)。

于是基于 RNN 出现了 LSTM 和 GRU 等变种算法。这些变种算法主要有几个特点:

  1. 长期信息可以有效的保留
  2. 挑选重要信息保留,不重要的信息会选择“遗忘”

RNN 几个典型的应用如下:

  1. 文本生成
  2. 语音识别
  3. 机器翻译
  4. 生成图像描述
  5. 视频标记

循环神经网络(Recurrent Neural Network, RNN)

是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接形成闭合回路的递归神经网络(recursive neural network)。

对循环神经网络的研究始于二十世纪80-90年代,并在二十一世纪初发展为重要的深度学习(deep learning)算法 ,其中双向循环神经网络(Bidirectional RNN, Bi-RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM)是常见的的循环神经网络。

循环神经网络具有记忆性、参数共享并且图灵完备(Turing completeness),因此能以很高的效率对序列的非线性特征进行学习。循环神经网络在自然语言处理(Natural Language Processing, NLP),例如语音识别、语言建模、机器翻译等领域有重要应用,也被用于各类时间序列预报或与卷积神经网络(Convoutional Neural Network,CNN)相结合处理计算机视觉问题。

循环神经网络(RNN)是一类神经网络,其中节点之间的连接形成一个有向图沿着序列。这允许它展示时间序列的时间动态行为。与前馈神经网络不同,RNN可以使用其内部状态(存储器)来处理输入序列。这使它们适用于诸如未分段,连接手写识别或语音识别等任务。

术语“递归神经网络”被不加选择地用于指代具有类似一般结构的两大类网络,其中一个是有限脉冲而另一个是无限脉冲。两类网络都表现出时间动态行为。有限脉冲递归网络是一种有向无环图,可以展开并用严格的前馈神经网络代替,而无限脉冲循环网络是一种无法展开的有向循环图。

有限脉冲和无限脉冲周期性网络都可以具有额外的存储状态,并且存储可以由神经网络直接控制。如果存储包含时间延迟或具有反馈循环,则存储也可以由另一个网络或图表替换。这种受控状态称为门控状态或门控存储器,并且是长短期存储器网络(LSTM)和门控循环单元的一部分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/97482.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数学建模】-- 模糊综合评价

模糊综合评价(Fuzzy Comprehensive Evaluation)是一种用于处理不确定性和模糊性信息的决策分析方法。它通常用于解决复杂的多指标决策问题,其中各指标之间可能存在交叉影响和模糊性的情况。模糊综合评价通过将不确定性和模糊性量化&#xff0…

火山引擎边缘云,助你沉浸式回忆童年

发现了吗?在抖音、西瓜视频上能观看4K修复的经典港片了!得益于抖音、中国电影资料馆、火山引擎共同发起的“经典香港电影修复计划”,我们童年时期看过的《大话西游之大圣娶亲》《武状元苏乞儿》等22部港片以更清晰、流畅、颜色饱满的状态回归…

windows 中pycharm中venv无法激活

1.用管理员身份打开Windows PowerShell 2.进入项目的:venv\Scripts 如:D: (1): cd .\project\venv\Scripts\ (2): 执行命令: Set-ExecutionPolicy RemoteSigned (3): 选择:Y (4): .\activate

【洛谷】P2678 跳石头

原题链接:https://www.luogu.com.cn/problem/P2678 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 二分答案。(使用二分需要满足两个条件。一个是有界,一个是单调。 这题的题面:使得选手们在比赛过程中…

SQL语言-01

SQL Structured Query Language 的简单介绍 SQL 中的书写规则 SQL 中的数据类型

【App出海成功案例】 | NetMarvel 帮助广告主ARPU增长45%,ECPM增长50%,付费率涨幅30%

中国App何以扬帆出海? 出海热发展到今天,中国App席卷西方世界的神话被一一打造,手游/非游双面开花,成功案例作为赛道代表,也成为众多出海广告主一一效仿的风向标。 它们在用户增长、变现收益上的打法是怎样的&#x…

QT下使用ffmpeg+SDL实现音视频播放器,支持录像截图功能,提供源码分享与下载

前言: SDL是音视频播放和渲染的一个开源库,主要利用它进行视频渲染和音频播放。 SDL库下载路径:https://github.com/libsdl-org/SDL/releases/tag/release-2.26.3,我使用的是2.26.3版本,大家可以自行选择该版本或其他版…

ChatGPT⼊门到精通(5):ChatGPT 和Claude区别

⼀、Claude介绍 Claude是Anthropic开发的⼀款⼈⼯智能助⼿。 官⽅⽹站: ⼆、Claude能做什么 它可以通过⾃然语⾔与您进⾏交互,理解您的问题并作出回复。Claude的主要功能包括: 1、问答功能 Claude可以解答⼴泛的常识问题与知识问题。⽆论是历史上的某个事件,理科…

node.js 简单使用 开始

1.概要 问:体验一下node.js 看一下如何运行。 答:使用命令 node 文件名.js 2.举例 2.1 代码准备(main.js) console.log(第一行node.js代码); 2.2 运行效果

Spark项目Java和Scala混合打包编译

文章目录 项目结构Pom完整文件编译查看 实际开发用有时候引用自己写的一些java工具类,但是整个项目是scala开发的spark程序,在项目打包时需要考虑到java和scala混合在一起编译。 今天看到之前很久之前写的一些打包编译文章,发现很多地方不太对…

新方案unity配表工具

工具下载:网盘链接 工具结构:针对每张表格生成一个表格类,其中默认包含一个list和字典类型参数记录表格数据,初始化项目时将list中的数据转为按id索引的dictionary,用于访问数据。额外包含一个同名Temp后缀的类&#…

力扣:73. 矩阵置零(Python3)

题目: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 来源:力扣(LeetCode) 链接:力扣(LeetCode)官网 - 全球极客挚…

Llama模型结构解析(源码阅读)

目录 1. LlamaModel整体结构流程图2. LlamaRMSNorm3. LlamaMLP4. LlamaRotaryEmbedding 参考资料: https://zhuanlan.zhihu.com/p/636784644 https://spaces.ac.cn/archives/8265 ——《Transformer升级之路:2、博采众长的旋转式位置编码》 前言&#x…

无涯教程-分类算法 - 随机森林

随机森林是一种监督学习算法,可用于分类和回归,但是,它主要用于分类问题,众所周知,森林由树木组成,更多树木意味着更坚固的森林。同样,随机森林算法在数据样本上创建决策树,然后从每…

Linux文件管理知识:查找文件(第二篇)

上篇文章详细介绍了linux系统中查找文件的工具或者命令程序locate和find命令的基本操作。那么,今天这篇文章紧接着查找文件相关操作内容介绍。 Find命令所属操作列表中的条目,有助于我们想要的结果输出。上篇文章已讲到find 命令是基于搜索结果来执行操作…

LAMP介绍与配置

一.LAMP 1.1.LAMP架构的组成 CGI(通用网关接口)和FastCGI(快速公共网关接口)都是用于将Web服务器与后端应用程序(如PHP、Python等)进行交互的协议/接口。 特点 CGI FastCGI 运行方式 每个请求启动…

Seaborn数据可视化(四)

目录 1.绘制箱线图 2.绘制小提琴图 3.绘制多面板图 4.绘制等高线图 5.绘制热力图 1.绘制箱线图 import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据(例如,使用seaborn自带的数据集) tips sns.load_dataset("t…

中国智慧燃气行业市场需求

文章来源:中研普华产业研究院 关键词:智慧燃气、智慧燃气场站、智慧燃气平台、设备设施数字化、数字孪生、工业互联网 智慧燃气,是以城市输气管网为基础,各终端用户协调发展,以信息通信平台为支撑,具有信…

C++信息学奥赛1177:奇数单增序列

#include<bits/stdc.h> using namespace std; int main(){int n;cin>>n; // 输入整数 n&#xff0c;表示数组的大小int arr[n]; // 创建大小为 n 的整型数组for(int i0;i<n;i) cin>>arr[i]; // 输入数组元素for(int i0;i<n;i){ // 对数组进行冒泡排序f…

在腾讯云服务器OpenCLoudOS系统中安装svn(有图详解)

1. 安装svn yum -y install subversion 安装成功&#xff1a; 2. 创建数据根目录及仓库 mkdir -p /usr/local/svn/svnrepository 创建test仓库&#xff1a; svnadmin create /usr/local/svn/test test仓库创建成功&#xff1a; 3. 修改配置test仓库 cd /usr/local/svn/te…