深度学习04 数据增强、调整学习率

目录

数据增强

常用的数据增强方法

调整学习率

学习率

调整学习率

​调整学习率的方法

有序调整

等间隔调整

        多间隔调整

        指数衰减

        余弦退火

​自适应调整

自定义调整

数据增强

数据增强是通过对训练数据进行各种变换(如旋转、翻转、裁剪等),生成新的训练样本,从而增加数据的多样性。它的主要目的是:

  • 提高模型的泛化能力。

  • 防止过拟合。

  • 在数据量不足的情况下,有效扩展数据集。

常用的数据增强方法

  1. 随机翻转(Random Flip)

    水平翻转:RandomHorizontalFlip         垂直翻转:RandomVerticalFlip
  2. 随机旋转(Random Rotation)

    随机旋转一定角度,例如 RandomRotation(30) 表示在 [-30°, 30°] 范围内随机旋转。
  3. 随机裁剪(Random Crop)

    随机裁剪图像的一部分,例如 RandomResizedCrop(256) 表示随机裁剪并调整大小为 256x256。
  4. 颜色变换(Color Jitter)

    随机调整亮度、对比度、饱和度和色调,例如 ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
  5. 高斯噪声(Gaussian Noise)

    为图像添加随机噪声。
  6. 归一化(Normalization)

    将图像像素值归一化到特定范围,例如 Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

例如:定义训练集和验证集的图像的数据增强模型

data_transforms = {'train':   
                transforms.Compose([  # transforms.Compose用于将多个图像预处理操作整合在一起
                transforms.Resize([300,300]),   # 使图像变换大小
                transforms.RandomRotation(45),   # 随机旋转,-42到45度之间随机选
                transforms.CenterCrop(256),    # 从中心开始裁剪[256.256]
                transforms.RandomHorizontalFlip(p=0.5),  # 随机水平旋转,随机概率为0.5
                transforms.RandomVerticalFlip(p=0.5),  # 随机垂直旋转,随机概率0.5
               transforms.ColorJitter(brightness=0.2,contrast=0.1,saturation=0.1,hue=0.1),   # 随机改变图像参数,参数分别表示 亮度、对比度、饱和度、色温
                transforms.RandomGrayscale(p=0.1),  # 概率转换成灰度率,3通道就是R=G=B
                transforms.ToTensor(),   # 将PIL图像或NumPy ndarray转换为tensor类型,并将像素值的范围从[0, 255]缩放到[0.0, 1.0],默认把通道维度放在前面
                transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])  # 给定均值和标准差对图像进行标准化,前者为均值,后者为标准差,三个值表示三通道图像
 
                ]),
                'valid':  # 验证集
                    transforms.Compose([   # 整合图像处理的操作
                    transforms.Resize([256,256]),   # 缩放图像尺寸
                    transforms.ToTensor(),   # 转换为torch类型
                    transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])    # 标准化
                ])
} 

嵌套定义好的数据增强模型

training_data=food_dataset(file_path=r'./train.txt',transform=data_transform['train'])
test_data=food_dataset(file_path=r'./test.txt',transform=data_transform['valid'])

调整学习率

学习率

  • 定义

    学习率是优化算法(如 SGD、Adam)中的一个超参数,控制模型参数的更新步长。

  • 作用

    • 如果学习率太大,可能导致参数更新过快,无法收敛甚至发散。

    • 如果学习率太小,训练速度会变慢,可能陷入局部最优。

  • 重要性:合适的学习率是模型训练成功的关键。

调整学习率

学习率调整(Learning Rate Scheduling) 是优化模型训练的关键技术之一。深度学习中的学习率决定了模型参数在每次更新时的步长大小,合适的学习率可以加速收敛并提高模型的性能。常用的学习率有0.1、0.01以及0.001等,学习率越大则权重更新越快。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。

目的

调整学习率的目的是为了能够更好地优化模型,避免训练过程中出现的一些问题,如梯度爆炸或梯度消失、训练过程陷入局部极小值等

调整学习率的方法

不同方法调整学习率所对应的横轴epoch值与纵轴学习率的关系如图

PyTorch 提供了多种学习率调度器,位于 torch.optim.lr_scheduler 模块中。

有序调整
等间隔调整
多间隔调整

指数衰减

余弦退火
自适应调整

自定义调整

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/972836.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微软宣布 Windows 11 将不再免费升级:升级需趁早

大家都知道如果你现在是Windows 10 系统,其实可以免费升级到正版 Windows 11,只要你的电脑配置满足 TPM2.0要求。 而最近微软已经公布了 Windows 10 的最后支持时间,也就是今年10月14日,在这之后微软将不再对Windows 10负责&#…

【Spring详解三】默认标签的解析

三、默认标签的解析 Spring的标签中有 默认标签和 自定义标签,两者的解析有着很大的不同,这次重点说默认标签的解析过程。 DefaultBeanDefinitionDocumentReader.class 默认标签的解析是在 DefaultBeanDefinitionDocumentReader.parseDefaultElement()函…

位运算,双指针,二分,排序算法

文章目录 位运算二进制中1的个数题解代码我们需要0题解代码 排序模版排序1题解代码模版排序2题解代码模版排序3题解代码 双指针最长连续不重复子序列题解代码 二分查找题解代码 位运算 1. bitset< 16 >将十进制数转为16位的二进制数 int x 25; cout << bitset<…

ArkTS与ArkUI深度解析:鸿蒙应用开发的未来之路

文章目录 **1. ArkTS与ArkUI概述****1.1 什么是ArkTS&#xff1f;****核心特性** **1.2 什么是ArkUI&#xff1f;****核心特性** **1.3 二者的核心优势** **2. ArkTS语言基础****2.1 语法特性与TypeScript的对比****2.2 变量与类型系统****基本类型****联合类型与类型别名** **…

关于 BK3633 上电时受串口 UART2 影响而无法启动的问题说明

1. 问题描述 BK3633 SDK 版本&#xff1a;BK3633_DesignKit_V06_2310 使用 BK3633 UART2 与指纹模块进行通讯&#xff0c;为了降低功耗&#xff0c;通过 GPIO 控制了指纹模块的供电电源。但每次给整个系统板子上电时&#xff0c;BK3633 很大概率会实际而无法正常运行程序&…

修改项目的一些前端记录(自用)

<div style"background:#f2f2f2;position:absolute;top:75px;width:10%;bottom:0px">\<ol class"tree">\<li>\<label for"folder1" class"folderOne foldertop"><img src"common/img/时间.png" …

tailwindcss学习01

系列教程 01 入门 02 vue中接入 入门 # 注意使用cmd不要powershell npm init -y # 如果没有npx则安装 npm install -g npx npm install -D tailwindcss3.4.17 --registry http://registry.npm.taobao.org npx tailwindcss init修改tailwind.config.js /** type {import(tai…

【Bert】自然语言(Language Model)入门之---Bert

every blog every motto: Although the world is full of suffering&#xff0c; it is full also of the overcoming of it 0. 前言 对bert进行梳理 论文&#xff1a; BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 时间&#xff1a;…

ARM64 Trust Firmware [五]

本章介绍 ATF 中的 Runtime Service 是如何定义和被调用的。 要了解 SMC&#xff0c;必须从 SMC 指令本身开始&#xff0c;其指令如下图&#xff1a; 指令格式为&#xff1a;SMC #<imm>&#xff0c;从官方文档了解到该指令只能在 EL1 以及更高的异常等级上调用&#xff…

轻量级5G核心网:适应未来网络需求的关键方案

5G核心网 随着5G技术的迅速普及&#xff0c;网络架构正面临前所未有的变革。传统的5G核心网部署逐渐暴露出在处理大量设备连接、降低运营成本和提升网络灵活性方面的局限性。在这一背景下&#xff0c;轻量级5G核心网&#xff08;Lightweight 5G Core Network&#xff09;成为了…

uniapp uni.request重复请求处理

类似这种切换tab时&#xff0c;如果操作很快并且网络不太好&#xff0c;就出现数据错乱&#xff0c;在网上查了一圈&#xff0c;有一个使用uview拦截处理的&#xff0c;但是原生uni.requse没有找到详细的解决办法&#xff0c;就查到使用 abort 方法&#xff0c;我自己封装了一个…

一周学会Flask3 Python Web开发-http响应状态码

锋哥原创的Flask3 Python Web开发 Flask3视频教程&#xff1a; 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili 在Flask程序中&#xff0c;客户端发出的请求触发相应的视图函数&#xff0c;获取返回值会作为响应的主体&#xff0c;最后生成…

FastGPT及大模型API(Docker)私有化部署指南

​​欢迎关注【AI技术开发者】 ​ 经过优化&#xff0c;在不影响FastGPT功能的情况下&#xff0c;大幅降低了部署的设备配置要求&#xff0c;仅需1c1h即可正常部署使用。 官方要求配置&#xff1a; ​ ​ 优化后的实际占用情况&#xff1a; 运行内存仅需370M&#xff08…

个人博客5年回顾

https://huangtao01.github.io/ 五年前&#xff0c;看程序羊的b站视频做的blog&#xff0c;受限于网络&#xff0c;只能单向学习&#xff0c;没有人指导与监督&#xff0c;从来没有想过&#xff0c;有没有什么问题&#xff1f; 一、为什么要做个人博客&#xff1f; 二、我是怎么…

11.编写前端内容|vscode链接Linux|html|css|js(C++)

vscode链接服务器 安装VScode插件 Chinese (Simplified) (简体中⽂) Language Pack for Visual Studio CodeOpen in BrowserRemote SSH 在命令行输入 remote-ssh接着输入 打开配置文件&#xff0c;已经配置好主机 点击远程资源管理器可以找到 右键链接 输入密码 …

DeepSeek R1生成图片总结2(虽然本身是不能直接生成图片,但是可以想办法利用别的工具一起实现)

DeepSeek官网 目前阶段&#xff0c;DeepSeek R1是不能直接生成图片的&#xff0c;但可以通过优化文本后转换为SVG或HTML代码&#xff0c;再保存为图片。另外&#xff0c;Janus-Pro是DeepSeek的多模态模型&#xff0c;支持文生图&#xff0c;但需要本地部署或者使用第三方工具。…

【达梦数据库】dblink连接[SqlServer/Mysql]报错处理

目录 背景问题1&#xff1a;无法测试以ODBC数据源方式访问的外部链接!问题分析&原因解决方法 问题2&#xff1a;DBLINK连接丢失问题分析&原因解决方法 问题3&#xff1a;DBIINK远程服务器获取对象[xxx]失败,错误洋情[[FreeTDS][SQL Server]Could not find stored proce…

【从0做项目】Java搜索引擎(4)——性能优化~烧脑~~~

本篇文章将对项目搜索引擎&#xff08;1&#xff09;~&#xff08;3&#xff09;进行性能优化&#xff0c;包括测试&#xff0c;优化思路&#xff0c;优化前后对比 目录 一&#xff1a;文件读取 二&#xff1a;实现多线程制作索引 1&#xff1a;代码分析 2&#xff1a;代码…

YOLOv12推理详解及部署实现

目录 前言一、YOLOv12推理(Python)1. YOLOv12预测2. YOLOv12预处理3. YOLOv12后处理4. YOLOv12推理 二、YOLOv12推理(C)1. ONNX导出2. YOLOv12预处理3. YOLOv12后处理4. YOLOv12推理 三、YOLOv12部署1. 源码下载2. 环境配置2.1 配置CMakeLists.txt2.2 配置Makefile 3. ONNX导出…

在VS-qt的程序中,后期增加PCH预编译功能,提高编译速度

由于前期创建qt程序的时候未勾选pch功能,导致没有启动预编译的功能. 这种情况下需要增加pch功能应该怎么做? 在项目中增加2个文件 stdafx.h和stdafx.cpp文件 stdafx.h增加qt常用头文件 #pragma once //windows #include <windows.h>//qt常用 #include <QObject&g…