WebGPT VS WebGPU

推荐:使用 NSDT编辑器 快速搭建3D应用场景

随着WebGPU的引入,Web开发发生了有趣的转变,WebGPU是一种新的API,允许Web应用程序直接访问设备的图形处理单元(GPU)。这种发展意义重大,因为 GPU 擅长复杂的计算。

一个说明WebGPU潜力的项目是WebGPT。这是一个用JavaScript和HTML编写的简单应用程序,旨在展示WebGPU API的功能。

在这篇文章中,我们将讨论为什么 WebGPT 很重要以及如何在本地和浏览器中实现它。我们走吧!

跳跃前进:

  • 什么是 WebGPT 和 WebGPU?
  • 实现 WebGPT
  • 在浏览器中运行 WebGPT
  • 在本地运行 WebGPT
  • 使用自定义 WebGPT 模型
  • WebGPT 的挑战和局限性
  • GPT 和其他变压器模型的未来

什么是 WebGPT 和 WebGPU?

在我们深入研究 WebGPT 的实际实现之前,让我们简要介绍一下它在幕后是如何工作的。

WebGPT 是转换器模型的 JavaScript 和 HTML 实现,转换器模型是一种特定的机器学习模型,旨在有效地处理序列数据。在自然语言处理 (NLP) 中,序列数据通常是指文本,其中单词和字符的顺序对其含义至关重要;序列的各个部分与整体一样重要。

转换器模型是擅长处理 NLP 序列数据的机器学习模型。这些模型构成了许多最先进的自然语言处理模型的基础,包括GPT(生成预训练转换器)。

WebGPT 的转换器模型旨在与 WebGPU 配合使用,WebGPU 是一个允许 Web 应用程序访问和使用设备GPU 的 API。GPU 特别擅长执行机器学习模型所需的并行计算类型,使其成为 WebGPT 的强大资源。

在WebGPU之前,应用程序必须主要依赖于设备的中央处理器(CPU)或较旧的,效率较低的API,如WebGL。相比之下,WebGPT 使用明确设计的转换器模型,以使用 WebGPU API 在浏览器中运行。

当 WebGPT 接收到输入时,它使用其转换器模型来处理数据。借助WebGPU API,它可以在用户设备上本地执行计算。然后,结果直接在浏览器中返回,从而实现快速高效的执行。

将如此强大的机器学习模型引入浏览器对 Web 开发具有深远的影响,包括:

  1. 实时数据处理:当可以在客户端完成计算时,有可能以最小的延迟进行实时数据处理。这可以改变一系列应用程序的用户体验,从交互式工具和游戏到实时分析。
  2. 增强的隐私:由于数据处理在用户设备上本地进行,因此无需将潜在的敏感数据发送到服务器。对于处理个人或敏感数据的应用程序来说,这可能会改变游戏规则,从而增强用户的信任和隐私。
  3. 成本效益:公司可以通过将计算负载从服务器转移到客户端来节省服务器成本。这可以使小型公司或个人开发人员可以使用高级机器学习功能。

实现 WebGPT

WebGPT被设计为易于使用:它只需要一组HTML和JavaScript文件即可运行。但是,由于WebGPU是一项相当新的技术,因此您需要与WebGPU兼容的浏览器。

截至 2023 年 113 月,Chrome v<> 支持 WebGPU。另一种方法是安装 Chrome Canary 或 Edge Canary 以确保兼容性。

在浏览器中运行 WebGPT

您可以直接在其演示网站上试用 WebGPT,网址为 https://www.kmeans.org。远程加载模型权重可能比在本地加载模型权重慢,因此为了获得响应速度更快的体验,建议尽可能在本地运行 WebGPT。

在本地运行 WebGPT

若要在本地运行 WebGPT,请执行以下步骤:

  1. 克隆 WebGPT 存储库:您可以通过在终端中运行以下命令来克隆存储库:git clone https://github.com/0hq/WebGPT.git
  2. 安装 Git LFS:克隆存储库后,需要使用 Git LFS 下载模型文件,Git LFS 是一个 Git 扩展,允许您在 Git 存储库中存储大文件。在本地计算机上安装 Git LFS,然后导航到终端中的 WebGPT 目录并运行:git lfs install
  3. 下载模型文件:之后,运行以下命令下载模型文件:git lfs pull
  4. 在本地服务器上启动 WebGPT 文件:您可以使用简单的 HTTP 服务器或像 Live Server for Visual Studio Code 这样的工具。
  5. 在浏览器中打开 WebGPT 页面:导航到运行 WebGPT 的本地服务器的 URL。您应该会看到如下所示的页面:

我们的网络GPT页面

我们的网络GPT页面

单击任意“加载模型”按钮以加载模型权重。之后,您可以在输入框中输入文本,然后单击 生成 根据输入生成文本。

我们的 WebGPT 演示在实际应用

我们的 WebGPT 演示在实际应用

使用自定义 WebGPT 模型

WebGPT 有两个内置模型:一个小型 GPT-莎士比亚模型和具有 2.117 亿个参数的 GPT-<>。如果要使用自定义模型,请检查存储库中的脚本目录,以将 PyTorch 模型转换为 WebGPT 可以使用的格式。other/conversion_scripts

以下是我们的目录:

我们的转换脚本目录

我们的转换脚本目录

WebGPU 的挑战和局限性

由于 WebGPT 建立在 WebGPU 之上,因此了解 WebGPU 的挑战和局限性非常重要。虽然WebGPU是一项有前途的技术,但它仍然是一个相对较新的API,因此它有一些挑战需要克服。其中一些包括:

  • 缺乏浏览器支持:并非所有浏览器目前都支持 WebGPU,即使是那些支持 WebGPU 的浏览器也可能没有完全支持。这可能会使开发和部署 WebGPU 应用程序变得困难,更不用说部署它们供公众使用了。
  • 复杂性:WebGPU 是一个复杂的 API,可能很难学习和使用。对于不熟悉低级图形 API 的开发人员来说,这可能是一个进入障碍
  • 性能:在某些情况下,WebGPU可能比WebGL慢,尤其是在较旧的硬件上。这是因为 WebGPU 是一个更低级别的 API,可能需要更多时间来编译着色器和设置图形管道

随着API的成熟和越来越多的浏览器支持它,我们可以期待看到这些挑战得到解决。与此同时,像WebGPT这样的工具可以帮助实验和采用WebGPU。

GPT 和其他变压器模型的未来

GPT 和类似模型由于其高计算需求而主要在服务器上运行;但是,WebGPT 表明这些模型可以直接在浏览器中运行,提供的性能可能与基于服务器的设置相媲美。

借助 WebGPU 等技术和 WebGPT 等项目提供的功能,我们可以将 GPT 等转换器模型的使用扩展相当多。随着技术的成熟和优化的改进,我们可以看到更大的模型在浏览器中流畅运行。


超过 200 万开发人员使用 LogRocket 创造更好的数字体验

了解更多→


这可以提高Web应用程序中高级AI功能的可用性,从更复杂的聊天机器人到强大的实时文本分析和生成工具,甚至加速变压器模型的研究和开发。通过使部署这些模型更容易、更便宜,更多的开发人员和研究人员将有机会试验和改进它们。

结论

通过 WebGPU 将高级机器学习模型引入浏览器为开发人员提供了许多机会,它提出了一个未来的愿景,即 Web 应用程序更强大、响应更快、更注重隐私。

原文链接:WebGPT VS WebGPU (mvrlink.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/97253.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

浅析token

上一章节我们学习了cookie和session机制&#xff0c;但是他们都有一些缺点&#xff0c;所有这次我们来了解一个机制---token。 一、cookie和session的缺点 cookie信息存储在客户端浏览器上&#xff0c;安全性较低&#xff0c;所以浏览器加入了一些限制确保cookie不会被恶意使用…

2023年京东婴童纸尿裤行业数据分析(京东数据运营)

当前&#xff0c;面对出生率下降、消费疲软等各种大环境不确定性&#xff0c;不仅是线下母婴店深陷于“生意难”的境地&#xff0c;线上消费同样受影响颇深&#xff0c;婴童纸尿裤类目便是如此。下面结合鲸参谋平台的数据&#xff0c;从行业大盘、品牌端等方面来看一下婴童纸尿…

Linux中的dpkg指令(dpkg -l | grep XXX等)

dpkg是Debian包管理系统中的一个工具&#xff0c;用于在Linux系统中安装、升级、删除和管理软件包。它是Debian、Ubuntu以及基于它们的发行版中的包管理器。 dpkg 有很多用法&#xff0c;常用之举例:dpkg -l | grep apt 显示系统中安装的与apt相关&#xff08;命名&#xff09…

什么是跨域(cross-origin)请求,如何解决跨域问题?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 跨域请求和跨域问题⭐ 解决跨域问题的方法1. CORS&#xff08;跨域资源共享&#xff09;2. JSONP&#xff08;JSON with Padding&#xff09;3. 代理服务器4. WebSocket5. 使用服务器中继 ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff…

我是如何成为一名全栈工程师的?

经历了将近一年的时间&#xff0c;我终于阶段性地完成了从iOS开发到后端开发的角色转变。 现在我可以自豪地说&#xff0c;我已经接近一名全栈工程师了&#xff0c;已经熟悉了后端开发的各种工具、环境和一些后端工作的方式。 接下来&#xff0c;我将继续熟悉框架、工具、语言…

企业主流全链路监控系统 - 理论

企业主流全链路监控系统 1. 问题背景2. 目标要求1. 探针的性能消耗2. 代码的侵入性3. 可扩展性4.数据的分析 3. 功能模块1. 埋点与生成日志2. 收集和存储日志3. 分析和统计调用链路数据&#xff0c;以及时效性4. 展现以及决策支持 4. Google Dapper1. Span2. Trace3. Annotatio…

QT设置mainwindow的窗口title

QT设置mainwindow的窗口title 在QT程序中&#xff0c;通常会有**aaaa-[bbbbbbb]**这种形式的title&#xff0c;对于刚上手qt的程序员同学&#xff0c;可能会简单的以为修改这种title&#xff0c;就是使用setWindowTitle这个接口&#xff0c;其实只对了一半&#xff0c;这种形式…

Ansible学习笔记9

yum_repository模块&#xff1a; yum_repository模块用于配置yum仓库的。 测试下&#xff1a; [rootlocalhost ~]# ansible group1 -m yum_repository -a "namelocal descriptionlocalyum baseurlfile:///mnt/ enabledyes gpgcheckno" 192.168.17.106 | CHANGED &g…

春秋云镜 CVE-2018-2894

春秋云镜 CVE-2018-2894 Weblogic 任意文件上传漏洞 靶标介绍 Oracle Fusion Middleware 的 Oracle WebLogic Server 组件中的漏洞&#xff08;子组件&#xff1a;WLS - Web Services&#xff09;。受影响的受支持版本包括 12.1.3.0、12.2.1.2 和 12.2.1.3。易于利用的漏洞允…

15.设备驱动的IO(阻塞/非阻塞)

目录 IO操作 两个阶段 阻塞操作 非阻塞操作 非阻塞模式实验 dts_led.c文件 app.c文件 Makefile文件 执行过程 阻塞IO&#xff1a;等待队列 wait_queue_head结构体&#xff1a;等待队列头 初始化等待队列头 init_waitqueue_head() DECLARE_WAIT_QUEUE_HEAD(name) …

matlab使用教程(24)—常微分方程(ODE)求解器

1.常微分方程 常微分方程 (ODE) 包含与一个自变量 t&#xff08;通常称为时间&#xff09;相关的因变量 y 的一个或多个导数。此处用于表示 y 关于 t 的导数的表示法对于一阶导数为 y ′ &#xff0c;对于二阶导数为 y ′′&#xff0c;依此类推。ODE 的阶数等于 y 在方程中…

每日一题(反转链表)

每日一题&#xff08;反转链表&#xff09; 206. 反转链表 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 可以定义一个新的newhead结构体指针。再定义cur指针和next指针互相配合&#xff0c;将原链表中的节点从头到尾依次头插到newhead链表中&#xff0c;同时更…

android:控件TextView

一、系统学习Android控制键TextView&#xff0c;我的笔记里面有尝试学着使用自定义控件。 二、具体内容 1.如果在代码中给textView赋值&#xff0c;在xml中也给textView赋值了最后运行出来的结果显示代码中赋的值。因此得出结论&#xff0c;代码中的赋值会覆盖xml所附的值。 …

15.MyCat数据库分片

MyCat 是一个开源的数据库中间件&#xff0c;主要用于将数据库操作请求路由和分发到后端的多个数据库节点。 1.Mycat环境搭建 在两个不同数据库中创建相同表 下载mycat https://github.com/MyCATApache/Mycat-Serverhttps://github.com/MyCATApache/Mycat-Server 将下…

QT 相关设置

目录 1.安装QT2.安装好之后需要做一些设置2.1 基本的字体及主题设置2.2 格式化美化代码插件设置 1.安装QT 具体教程不写了 2.安装好之后需要做一些设置 2.1 基本的字体及主题设置 进入选项 选择喜欢的主题 字号字体设置 2.2 格式化美化代码插件设置 先下载一个格式化插…

从Gamma空间改为Linear空间会导致性能下降吗

1&#xff09;从Gamma空间改为Linear空间会导致性能下降吗 2&#xff09;如何处理没有使用Unity Ads却收到了GooglePlay平台的警告 3&#xff09;C#端如何处理xLua在执行DoString时候死循环 4&#xff09;Texture2DArray相关 这是第350篇UWA技术知识分享的推送&#xff0c;精选…

华为OD七日集训第1期复盘 - 按算法分类,由易到难,循序渐进,玩转OD(文末送书)

目录 一、活动内容如下第1天、逻辑分析第2天、字符串处理第3天、数据结构第4天、双指针第5天、递归回溯第6天、二分查找第7天、贪心算法 && 二叉树 二、可观测性工程1、简介2、主要内容 大家好&#xff0c;我是哪吒。 最近一直在刷华为OD机试的算法题&#xff0c;坚持…

腾讯音乐如何基于大模型 + OLAP 构建智能数据服务平台

本文导读&#xff1a; 当前&#xff0c;大语言模型的应用正在全球范围内引发新一轮的技术革命与商业浪潮。腾讯音乐作为中国领先在线音乐娱乐平台&#xff0c;利用庞大用户群与多元场景的优势&#xff0c;持续探索大模型赛道的多元应用。本文将详细介绍腾讯音乐如何基于 Apach…

leetcode121. 买卖股票的最佳时机

题目&#xff1a; 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易…