Python 基础-使用dict和set

dict

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。 

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

如果key不存在,dict就会报错:

>>> d['Thomas']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在: 

>>> 'Thomas' in d
False

二是通过dict提供的get()方法,如果key不存在,可以返回None,或者自己指定的value:

>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

注意:返回None的时候Python的交互环境不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  1. 查找和插入的速度极快,不会随着key的增加而变慢;
  2. 需要占用大量的内存,内存浪费多。

而list相反:

  1. 查找和插入的时间随着元素的增加而增加;
  2. 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,用{x,y,z,...}列出每个元素:

>>> s = {1, 2, 3}
>>> s
{1, 2, 3}

或者提供一个list作为输入集合:

>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}

注意,传入的参数[1, 2, 3]是一个list,而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。

重复元素在set中自动被过滤:

>>> s = {1, 1, 2, 2, 3, 3}
>>> s
{1, 2, 3}

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

通过remove(key)方法可以删除元素:

>>> s.remove(4)
>>> s
{1, 2, 3}

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

>>> s1 = {1, 2, 3}
>>> s2 = {2, 3, 4}
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。

再议不可变对象

上面我们讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

而对于不可变对象,比如str,对str进行操作呢:

>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc'

┌───┐     ┌───────┐
│ a │────▶│ 'abc' │
└───┘     └───────┘

当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

┌───┐     ┌───────┐
│ a │────▶│ 'abc' │
└───┘     └───────┘
┌───┐     ┌───────┐
│ b │────▶│ 'Abc' │
└───┘     └───────┘

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。

小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,但试试把(1, 2, 3)(1, [2, 3])放入dict或set中,并解释结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/972035.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

50页PDF|数字化转型成熟度模型与评估(附下载)

一、前言 这份报告依据GBT 43439-2023标准&#xff0c;详细介绍了数字化转型的成熟度模型和评估方法。报告将成熟度分为五个等级&#xff0c;从一级的基础转型意识&#xff0c;到五级的基于数据的生态价值构建与创新&#xff0c;涵盖了组织、技术、数据、资源、数字化运营等多…

aistdio部署deepseek-r1纯教程

前言 笔者电脑未扩容&#xff0c;想玩玩本地化的deepseek&#xff0c;苦于&#x1f447;久矣&#xff0c; 想到之前老师介绍的百度云平台飞桨AI Studio星河社区-人工智能学习与实训社区 于是就开始尝试部署终端版deepseek. 一、新建项目 1.打开飞桨网站&#xff0c;创建not…

实现动态翻转时钟效果的 HTML、CSS 和 JavaScript,附源码

实现动态翻转时钟效果的 HTML、CSS 和 JavaScript 在现代网页设计中&#xff0c;动画效果可以极大地增强用户体验。本文将介绍如何利用 HTML、CSS 和 JavaScript 创建一个动态翻转时钟的效果&#xff0c;模拟经典机械翻页时钟的视觉效果。我们将通过详细的步骤讲解如何实现时钟…

RagFlow+Ollama 构建RAG私有化知识库

RagFlowOllama 构建RAG私有化知识库 关于RAG一、什么是RAGFlow一、RAGFlow 安装配置测服已有服务&#xff1a; mysql、redis、elasticsearch 二、RAGFlow 配置 ollama&#xff1a;本地运行大型语言模型的工具软件。用户可以轻松下载、运行和管理各种开源 LLM。降低使用门槛&…

JavaScript(JS)

介绍 JavaScript(简称:JS)是一门跨平台、面向对象的脚本语言。是用来控制网页行为的&#xff0c;它能使网页可交互 JavaScript 和Java 是完全不同的语言&#xff0c;不论是概念还是设计。但是基础语法类似 JS引入方式 内部脚本:将JS代码定义在HTML页面中 JavaScript代码…

LLM 架构

LLM 分类 : 自编码模型 (encoder) : 代表模型 : BERT自回归模型 (decoder) : 代表模型 : GPT序列到序列模型 (encoder-decoder) : 代表模型 : T5 自编码模型 (AutoEncoder model , AE) 代表模型 : BERT (Bidirectional Encoder Representation from Transformers)特点 : Enc…

剑指 Offer II 023. 两个链表的第一个重合节点

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20023.%20%E4%B8%A4%E4%B8%AA%E9%93%BE%E8%A1%A8%E7%9A%84%E7%AC%AC%E4%B8%80%E4%B8%AA%E9%87%8D%E5%90%88%E8%8A%82%E7%82%B9/README.md 剑指 Offer II 023. 两…

【git-hub项目:YOLOs-CPP】本地实现04:项目简化

项目跑通之后,我们常常还需要对我们没有用到的任何内容进行删除,以简化项目体积,也便于我们阅读和后续部署。如何实现呢?本篇博客教会大家实现! 项目一键下载【⬇️⬇️⬇️】: 精简后:【GitHub跑通项目:YOLOs-CPP】+【计算机视觉】+【YOLOv11模型】+【windows+Cpp+ONN…

R语言用逻辑回归贝叶斯层次对本垒打数据与心脏移植数据后验预测检验模拟推断及先验影响分析|附数据代码...

全文链接&#xff1a;https://tecdat.cn/?p40152 在统计学领域中&#xff0c;层次建模是一种极为强大且实用的工具。它能够巧妙地处理复杂的数据结构&#xff0c;通过分层的方式对数据进行建模。在贝叶斯统计的框架内&#xff0c;层次建模优势尽显&#xff0c;其可以有效地融合…

解锁机器学习核心算法 | 随机森林算法:机器学习的超强武器

一、引言 在机器学习的广阔领域中&#xff0c;算法的选择犹如为一场冒险挑选趁手的武器&#xff0c;至关重要。面对海量的数据和复杂的任务&#xff0c;合适的算法能够化繁为简&#xff0c;精准地挖掘出数据背后隐藏的模式与价值。机器学习领域有十大核心算法&#xff0c;而随…

网络工程师 (43)IP数据报

前言 IP数据报是互联网传输控制协议&#xff08;Internet Protocol&#xff0c;IP&#xff09;的数据报格式&#xff0c;由首部和数据两部分组成。 一、首部 IP数据报的首部是控制部分&#xff0c;包含了数据报传输和处理所需的各种信息。首部可以分为固定部分和可变部分。 固定…

部署k8s 集群1.26.0(containerd方式)

随着k8s版本逐步更新&#xff0c;在不支持docker环境的情况下&#xff0c;需要使用containerd方式作为容器引擎。为了更好的个人学习使用&#xff0c;需要重新部署一套1.26.0版本的k8s集群&#xff0c;并且使用containerd方式作为容器引擎&#xff0c;版本为1.6.33。在部署过程…

移动通信发展史

概念解释 第一代网络通信 1G 第二代网络通信 2G 第三代网络通信 3G 第四代网络通信 4G 4g网络有很高的速率和很低的延时——高到500M的上传和1G的下载 日常中的4G只是用到了4G技术 运营商 移动-从民企到国企 联通-南方教育口有人 电信 铁通&#xff1a;成立于 2000 年…

HarmonyOS进程通信及原理

大家好&#xff0c;我是学徒小z&#xff0c;最近在研究鸿蒙中一些偏底层原理的内容&#xff0c;今天分析进程通信给大家&#xff0c;请用餐&#x1f60a; 文章目录 进程间通信1. 通过公共事件&#xff08;ohos.commonEventManager&#xff09;公共事件的底层原理 2. IPC Kit能…

openCV中如何实现滤波

图像滤波用于去除噪声和图像平滑&#xff0c;OpenCV 提供了多种滤波器&#xff1a; 1.1. 均值滤波&#xff1a; import cv2# 读取图像 image cv2.imread("example.jpg")# 均值滤波 blurred_image cv2.blur(image, (5, 5)) # (5, 5) 是滤波核的大小 滤波核大小的…

Linux网络 | 多路转接Reactor

前言&#xff1a;本节内容结束Linux网络部分。本节将要简单实现一下多路转接Reactor的代码&#xff0c;制作一个多路转接版本的四则运算计算器服务器。Reactor的代码相当困难&#xff0c;除了350多行新代码&#xff0c; 还要用到我们之前写的许多文件&#xff0c; 比如之前写的…

数控机床设备分布式健康监测与智能维护系统MTAgent

数控机床设备分布式健康监测与智能维护系统MTAgent-v1.1融合了目前各种先进的信号处理以及信息分析算法以算法工具箱的方式&#xff0c;采用了一种开发的、模块化的结构实现信号各种分析处理&#xff0c;采用Python编程语言&#xff0c;满足不同平台需求(包括Windows、Linux)。…

Opencv项目实战:26 信用卡号码识别与类型判定

项目介绍 在日常生活中&#xff0c;信用卡的使用越来越普遍。本项目的主要目标是通过图像处理技术自动识别信用卡号码&#xff0c;并根据信用卡号码的第一个数字判定信用卡的类型&#xff08;如Visa、MasterCard等&#xff09;。项目结合了图像预处理、轮廓检测、模板匹配等技…

利用websocket检测网络连接稳定性

浏览器中打开F12&#xff0c;控制台中输入以下内容 > 回车 > 等待结果 连接关闭 表示断网 let reconnectDelay 1000; // 初始重连间隔 let pingInterval null; let socketManuallyClosed false; // 标志是否手动关闭function createWebSocket() {if (socketManuallyCl…

WPF9-数据绑定进阶

目录 1. 定义2. 背景3. Binding源3.1. 使用Data Context作为Binding的源3.2. 使用LINQ检索结果作为Binding的源 4. Binding对数据的转换和校验4.1. 需求4.2. 实现步骤4.3. 值转换和校验的好处4.3.1. 数据转换的好处 4.4. 数据校验的好处4.5. 原理4.5.1. 值转换器原理4.5.2. 数据…