基于逻辑回归构建肿瘤预测模型

使用逻辑回归构建肿瘤预测模型

描述

乳腺癌数据集包括569个样本,每个样本有30个特征值(病灶特征数据),每个样本都属于恶性(0)或良性(1)两个类别之一,要求使用逻辑回归(LR)算法建立预测模型,实现准确预测新的病灶数据的类型(恶性或良性)。

样本特征数据为病灶影像的测量数据,部分特征如下:

请添加图片描述

本任务的主要实践内容:

1、 逻辑回归-肿瘤预测模型的构建、预测及评估

2、 逻辑回归-鸢尾花(Iris)分类模型的实现

源码下载

环境

  • 操作系统:Windows 10、Ubuntu18.04

  • 工具软件:Anaconda3 2019、Python3.7

  • 硬件环境:无特殊要求

  • 依赖库列表

    matplotlib	3.3.4
    numpy 			1.19.5
    pandas			1.1.5
    scikit-learn	0.24.2
    mglearn        0.1.9
    

分析

逻辑回归(LogisticRegression)虽然名字中带有“回归”,却是一个经典的分类算法, 本任务通过完成乳腺癌肿瘤预测(通过病灶特征数据预测肿瘤为恶性还是良性,属于监督学习中二分类问题),熟练掌握逻辑回归的原理及编程应用。

本任务涉及以下几个环节:

a)加载、查看乳腺癌数据集

b)数据集拆分

d)构建模型、评估并优化模型、

e)在测试集上预测结果,并输出预测概率

f)利用逻辑回归实现鸢尾花分类(多分类)

实施

1、加载、查看乳腺癌数据集

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer() # 加载cancer数据集
print(cancer.keys()) # 查看数据有哪些keys(与鸢尾花数据集相同)

输出结果:

dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])
print('Shape of data:', cancer.data.shape) # 数据集尺寸

输出结果:

Shape of data: (569, 30)
print(cancer.target_names) # 标签名称(malingant-恶性,begin-良性)
print(cancer.target) # 标签数据(569个0或1, 0-恶性,1-良性)

输出结果:

['malignant' 'benign']
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0
 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1
 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1
 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0
 1 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1
 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1
 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1
 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1
 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1
 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0
 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 0 0 0 0 0 0 1]

2、拆分数据集

from sklearn.model_selection import train_test_split

# 随机拆分数据集
# X_train 训练集
# X_test 测试集
# y_train 训练集标签(即训练集数据对应的类别)
# y_test 测试集标签(即测试集数据对应的类别)
# test_size 测试集比例
# random_state 随机状态(设置为固定值可以锁定拆分结果,用于数据复现)
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, 
                                                    test_size=0.25, random_state=0)
# 查看拆分情况
print(X_train.shape, X_test.shape)
print(y_train.shape, y_test.shape)

输出结果:

(426, 30) (143, 30)
(426,) (143,)

3、构建模型、评估

from sklearn.linear_model import LogisticRegression

# 采用默认参数创建LR模型,并拟合训练数据
model = LogisticRegression().fit(X_train, y_train)

# 评估模型在训练集和测试集上的成绩
score_train = model.score(X_train, y_train)
score_test = model.score(X_test, y_test)
print(score_train, score_test)

输出结果:

0.9553990610328639 0.958041958041958

4、在测试集上预测结果,并输出预测概率

这里我们预测测试集中的前三个样本,输出预测结果(0-恶性,1-良性),并输出0和1对应的概率值。

# 预测结果(0-恶性,1-良性)
y_pred = model.predict(X_test[:3]) # 预测测试集前三个样本
print(y_pred)

# 输出预测的概率值(0和1的概率值)
y_pred_proba = model.predict_proba(X_test[:3]) # 预测测试集前三个样本
print(y_pred_proba)

输出结果:

[0 1 1]
[[0.99284545 0.00715455]
 [0.0332907  0.9667093 ]
 [0.00271258 0.99728742]] # 该样本属于0的概率为0.002,属于1的概率为0.997,所以判断为类别1

强调:逻辑回归算法计算样本属于每个类别的概率值(即可能性),取概率值最大的类别作为预测结果。

5、扩展练习——基于逻辑回归实现鸢尾花分类(多分类问题)

from sklearn.datasets import load_iris 

# 加载Iris数据集
iris = load_iris()

# 数据集拆分
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, 
                                                    test_size=0.25, random_state=0)
# 创建LR模型
# model = LogisticRegression().fit(X_train, y_train) # 0.9821428571428571 0.9736842105263158
# 优化模型参数,提升模型性能(C正则化系数,penalty正则化类型l1 or l2)
model = LogisticRegression(C=10, penalty='l2').fit(X_train, y_train)   # 0.9910714285714286 0.9736842105263158

# 评估模型成绩
score_train = model.score(X_train, y_train)
score_test = model.score(X_test, y_test)
print(score_train, score_test)

# 预测鸢尾花种类并与实际种类做对比(前十个样本)
y_pred = model.predict(X_test)
print('预测类别:' ,y_pred[:10])
print('实际类别:' ,y_test[:10])

输出结果:

0.9821428571428571 0.9736842105263158
预测类别: [2 1 0 2 0 2 0 1 1 1]
实际类别: [2 1 0 2 0 2 0 1 1 1]

优化参数,提升模型性能:

model = LogisticRegression(C=10, penalty='l2').fit(X_train, y_train) # 0.9910714285714286 0.9736842105263158

优化后结果为:

0.9910714285714286 0.9736842105263158
预测类别: [2 1 0 2 0 2 0 1 1 1]
实际类别: [2 1 0 2 0 2 0 1 1 1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/9712.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

spring beancopier Cannot invoke “Object.getClass()“ because “cause“ is null异常处理

我们项目用到spring beancopier, 在别的机器上运行正常,代码拉到我机器上就不正常了,抛出异常信息如题。 Caused by: org.springframework.beans.BeanInstantiationException: Failed to instantiate [com.ibm.riskmeasure.rwaservice.service.singlete…

ASP.NET Core MVC 从入门到精通之初窥门径

随着技术的发展,ASP.NET Core MVC也推出了好长时间,经过不断的版本更新迭代,已经越来越完善,本系列文章主要讲解ASP.NET Core MVC开发B/S系统过程中所涉及到的相关内容,适用于初学者,在校毕业生&#xff0c…

字节跳动软件测试面试过了,起薪20k

普通二本计算机专业毕业,从毕业后,第一份接触测试的工作是在一家通讯小公司,大部分接触的工作是以功能测试为主,一直都是几千块钱工资,还一度被派出差,以及兼职各种产品、运维、运营的活,感觉自…

真1分钟搞懂缓存穿透、缓存击穿、缓存雪崩

💗推荐阅读文章💗 🌸JavaSE系列🌸👉1️⃣《JavaSE系列教程》🌺MySQL系列🌺👉2️⃣《MySQL系列教程》🍀JavaWeb系列🍀👉3️⃣《JavaWeb系列教程》…

NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027

然后我们来看连接与关系部分 然后右键一个关系可以看他的配置 注意这个,如果添加多个关系,这里flowfile就会自动clone 然后可以看到连接的配置中有,flowfile过期时间配置,有back pressure 背压配置, 有负载均衡配置 这里的这个FlowFile Expiration是配置FlowFile在队列中的过期…

网络中的一些基本概念

组建网络的重要设备 集线器,交换机(组建局域网,不能跨局域网组建网络),路由器(wifi本质上是无线路由器,路由器的本质的把俩个局域网给连起来) 网络通信的一些基础概念 IP地址 标识了网络设备所在的位置 端口号 标识了一个具体的应用程序 协议 协议是网络通信的概念,约定好…

虹科案例 | 虹科Domo商业智能,助力保险公司逃离繁杂数据池!

金融行业的发展充满着不确定性,一个具备强大承保能力和精算专业知识的资金池,对于身处该领域的公司和个人都是十分必要的。 在全国城市联盟(NLC)的协助下成立的NCL Mutual会员制互助保险公司,为各个地区城市提供了稳定…

第13届蓝桥杯省赛真题剖析-2022年4月23日Scratch编程初中级组

[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第121讲。 第13届蓝桥杯省赛举办了两次,这是2022年4月23日举行的第二次省赛,比赛仍然采取线上形…

MySQL SQL性能分析 慢查询日志、explain使用

SQL执行频率 MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的insert、update、delete、delect的访问频次: -- session 是查看当前会话; -- global 是查询全局数…

paddle实现手写数字识别模型继续解读

要点: 手写数字识别用简单的线性进行分类效果比较差,添加卷积层和池化层效果会相对较好。参考文档:百度官方文档 一 网络结构 前几节我们尝试使用与房价预测相同的简单神经网络解决手写数字识别问题,但是效果并不理想。原因是手…

7.1 基本运放电路(1)

集成运放的应用首先表现在它能构成各种运算电路上,并因此而得名。在运算电路中,以输入电压作为自变量,以输出电压作为函数;当输入电压变化时,输出电压将按一定的数学规律变化,即输出电压反映输入电压某种运…

Msray-Plus采集工具帮您轻松获取目标受众的数据,让您的市场营销更加便捷

市场营销是企业推广产品和服务的重要手段之一,是企业获取客户和提高销售业绩的关键环节。然而,传统的市场营销方式存在着很多弊端,如缺乏数据支持、信息不准确、效率低下等问题,这些问题直接影响了企业的市场营销效果。而随着互联…

【Redis学习】Redis集群

理论简介 定义 由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Redis的集群,其作用是提供在多个Redis节东间共享数据的程序集。…

Python中的主函数

在Python代码中,我们常常看到主函数是以if __name__ __main__开头的,比如 它的原理是什么呢? 首先要知道,__name__是内置变量,用于表示当前模块的名字。在一个模块中运行以下语句,你会发现输出的是__main…

elasticsearch 核心概念

1.近实时(Near Real Time,NRT) elasticsearch 是一个近实时的搜索和分析平台,这意味着从索引文档到可搜索文档都会有一段微小的延迟(通常是1s以内)。这种延迟主要是因为 elasticsearch 需要进行数据刷新和索引更新。 …

基于目标级联法的微网群多主体分布式优化调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

餐饮店的运营需要考虑哪些方面

餐饮店的运营需要多方面的考虑和规划,以下是传递宝APP上一些常用的餐饮店运营方法: 1.定位:明确餐饮店的定位和目标客户群体,针对不同的客户需求,提供个性化的服务和产品,比如是附近的上班族,还…

Android:NDK

3.1 NDK 一、NDK的作用 (1)、NDK产生的背景   Android平台从诞生起,就已经支持C、C开发。众所周知,Android的SDK基于Java实现,这意味着基于Android SDK进行开发的第三方应用都必须使用Java语言。但这并不等同于“第三…

JVM 、JDK 、JRE都是什么意思?有什么区别?

摘自 JavaGuide (「Java学习面试指南」一份涵盖大部分 Java 程序员所需要掌握的核心知识。准备 Java 面试,首选 JavaGuide!) JVM Java 虚拟机(JVM)是运行 Java 字节码的虚拟机。JVM 有针对不同系统的特定实…

看完这个你就牛了,自动化测试框架设计

一、引言 随着IT技术的快速发展,软件开发变得越来越快速和复杂化。在这种背景下,传统的手工测试方式已经无法满足测试需求,而自动化测试随之而生。 自动化测试可以提高测试效率和测试质量,减少重复性的测试工作,从而…