(二)范数与距离

本文主要内容如下:

  • 1. 范数的定义
  • 2. 常见的范数举例
  • 3. 范数的等价
  • 4. 距离与度量空间的定义

1. 范数的定义

定义1-1:设 E E E 为向量空间, R \mathbb{R} R 为实数域。若映射
∥ ⋅ ∥ :   E → R :   x ↦ ∥ x ∥ \begin{equation*} \lVert\cdot\rVert:~E\rightarrow\mathbb{R}:~x\mapsto\lVert{x}\rVert \end{equation*} : ER: xx
∀   x , y ∈ E ;   λ ∈ R \forall~x,y\in{E};~\lambda\in\mathbb{R}  x,yE; λR 满足

    ~~~     1) 正定性:   ∥ x ∥ ⩾ 0 ~\lVert{x}\rVert\geqslant0  x0 ,当且仅当 x = 0 x=0 x=0 时取等号;

    ~~~     2) 正齐次性:   ∥ λ x ∥ = ∣ λ ∣ ⋅ ∥ x ∥ ~\lVert{\lambda x}\rVert=\lvert{\lambda}\rvert\cdot\lVert{x}\rVert  λx=λx;

    ~~~     3) 三角不等式:   ∥ x + y ∥ ⩽ ∥ x ∥ + ∥ y ∥ ~\lVert{x+y}\rVert\leqslant\lVert{x}\rVert+\lVert{y}\rVert  x+yx+y;

则将其称为范数,为区分定义在不同向量空间上的范数,也记作 ∥ ⋅ ∥ E \lVert\cdot\rVert_E E,而将 ( E , ∥ ⋅ ∥ ) (E,\lVert{\cdot}\rVert) (E,∥) 称为赋范线性空间

定理1-1:范数 ∥ ⋅ ∥ \lVert{\cdot}\rVert 是一个凸函数,即
∥ λ x + ( 1 − λ ) y ∥ ⩽ λ ∥ x ∥ + ( 1 − λ ) ∥ y ∥ , ∀   x , y ∈ E ;   λ ∈ [ 0 , 1 ] \begin{equation} \lVert{\lambda x+(1-\lambda)y}\rVert\leqslant\lambda\lVert{x}\rVert+(1-\lambda)\lVert{y}\rVert ,\qquad\forall~x,y\in{E};~\lambda\in[0,1] \end{equation} λx+(1λ)yλx+(1λ)y, x,yE; λ[0,1]

证明:由范数定义中的三角不等式:
∥ λ x + ( 1 − λ ) y ∥ ⩽ ∥ λ x ∥ + ∥ ( 1 − λ ) y ∥ = ∣ λ ∣ ⋅ ∥ x ∥ + ∣ 1 − λ ∣ ⋅ ∥ y ∥ = λ ∥ x ∥ + ( 1 − λ ) ∥ y ∥ (证毕) \begin{align*} \lVert{\lambda x+(1-\lambda)y}\rVert &\leqslant\lVert{\lambda x}\rVert+\lVert(1-\lambda){y}\rVert \\[3mm] &=|\lambda|\cdot\lVert{x}\rVert+|1-\lambda|\cdot\lVert{y}\rVert \\[3mm] &=\lambda\lVert{x}\rVert+(1-\lambda)\lVert{y}\rVert \qquad\qquad\text{(证毕)} \end{align*} λx+(1λ)yλx+∥(1λ)y=λx+∣1λy=λx+(1λ)y(证毕)

定理1-2:定义在向量空间 E E E 上的范数 ∥ ⋅ ∥ \lVert{\cdot}\rVert 满足不等式:
∣   ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣   ∣ ≤ ∣ ∣ x ± y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ , x , y ∈ E \begin{equation} \big\lvert~||{x}||-||{y}||~\big\rvert\le||{x}\pm{y}||\le||{x}||+||{y}|| ,\qquad x,y\in E \end{equation}  ∣∣x∣∣∣∣y∣∣  ∣∣x±y∣∣∣∣x∣∣+∣∣y∣∣,x,yE

证明:由三角不等式:
{ ∣ ∣ x − y ∣ ∣ + ∣ ∣ y ∣ ∣ ≥ ∣ ∣ x ∣ ∣ ⟹ ∣ ∣ x − y ∣ ∣ ≥ ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ∣ ∣ x − y ∣ ∣ + ∣ ∣ x ∣ ∣ = ∣ ∣ y − x ∣ ∣ + ∣ ∣ x ∣ ∣ ≥ ∣ ∣ y ∣ ∣ ⟹ ∣ ∣ x − y ∣ ∣ ≥ ∣ ∣ y ∣ ∣ − ∣ ∣ x ∣ ∣ \begin{cases} ||{x}-{y}||+||{y}||\ge||{x}||\Longrightarrow ||{x}-{y}||\ge||{x}||-||{y}|| \\[5mm] ||{x}-{y}||+||{x}||=||{y}-{x}||+||{x}||\ge||{y}||\Longrightarrow ||{x}-{y}||\ge||{y}||-||{x}|| \end{cases} ∣∣xy∣∣+∣∣y∣∣∣∣x∣∣∣∣xy∣∣∣∣x∣∣∣∣y∣∣∣∣xy∣∣+∣∣x∣∣=∣∣yx∣∣+∣∣x∣∣∣∣y∣∣∣∣xy∣∣∣∣y∣∣∣∣x∣∣故有:
∣   ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣   ∣ ≤ ∣ ∣ x − y ∣ ∣ \begin{equation*} \big\lvert~||{x}||-||{y}||~\big\rvert\le||{x}-{y}|| \end{equation*}  ∣∣x∣∣∣∣y∣∣  ∣∣xy∣∣
∣ ∣ x − y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ − y ∣ ∣ = ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ (证毕) \begin{equation*} ||{x}-{y}||\le||x||+||-y||=||x||+||y||\qquad\text{(证毕)} \end{equation*} ∣∣xy∣∣∣∣x∣∣+∣∣y∣∣=∣∣x∣∣+∣∣y∣∣(证毕)

2. 常见的范数举例

1 1 1:定义在 实数空间 R \mathbb{R} R 上的范数 :
∥ x ∥ = ∣ x ∣ , x ∈ R \lVert{x}\rVert=|x|,\qquad x\in\mathbb{R} x=x,xR容易验证上述定义是满足范数的三点要求的。

2 2 2:定义在 n n n 维 Euclidean 空间 R n \mathbb{R}^n Rn
R n = { x = ( x 1 , x 2 , ⋯   , x n ) ∣ x i ∈ R ,   1 = 1 , 2 , ⋯   , n } \begin{equation*} \mathbb{R}^n=\bigg\{x=(x_1,x_2,\cdots,x_n)\bigg|x_i\in\mathbb{R},~1=1,2,\cdots,n\bigg\} \end{equation*} Rn={x=(x1,x2,,xn) xiR, 1=1,2,,n}上的 p p p-范数
∣ ∣ x ∣ ∣ p ≜ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p , x ∈ R n   ;   p ∈ [ 1 , ∞ ) \begin{equation} ||{x}||_{p}\triangleq\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} ,\qquad x\in\mathbb{R}^n~;~p\in[1,\infty) \end{equation} ∣∣xp(i=1nxip)p1,xRn ; p[1,)
特比地,
{ 1 -范数: ∣ ∣ x ∣ ∣ 1 ≜ ∑ i = 1 n   ∣ x i ∣ 2 -范数(欧式范数): ∣ ∣ x ∣ ∣ 2 ≜ ∑ i = 1 n   x i 2 ∞ -范数(最大范数): ∣ ∣ x ∣ ∣ ∞ ≜ max ⁡ 1 ≤ i ≤ n   ∣ x i ∣ \begin{cases} \text{$1$-范数:} &||{x}||_{1}\triangleq \displaystyle{\sum_{i=1}^n}~|x_i| \\[6mm] \text{$2$-范数(欧式范数):} &||{x}||_{2}\triangleq \sqrt{\displaystyle{\sum_{i=1}^n}~x_i^2}\\[6mm] \text{$\infty$-范数(最大范数):}&||{x}||_{\infty}\triangleq \max\limits_{1\le i\le n}~|x_i| \end{cases} 1-范数:2-范数(欧式范数):∞-范数(最大范数):∣∣x1i=1n xi∣∣x2i=1n xi2 ∣∣x1inmax xi

证明:先验证上述“范数”的定义满足范数的三点要求 :

1) 正定性 :
∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ≥ 0 ||{x}||_{p}=\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\ge0 ∣∣xp=(i=1nxip)p10上述不等式取等号时,当且仅当
∣ x i ∣ = 0   ( i = 1 , 2 , … , n ) ⟺ x = 0 |x_i|=0\ (i=1,2,\dots,n)\Longleftrightarrow {x}=0 xi=0 (i=1,2,,n)x=0 2)正齐次性 :
∣ ∣ λ x ∣ ∣ p = ( ∑ i = 1 n ( ∣ λ ∣ ⋅ ∣ x i ∣ ) p ) 1 p = ∣ λ ∣ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ p ||\lambda{x}||_{p}=\left(\sum_{i=1}^n (|\lambda|\cdot|x_i|)^p\right)^{\frac{1}{p}}=|\lambda|\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=|\lambda|\cdot||{x}||_{p} ∣∣λxp=(i=1n(λxi)p)p1=λ(i=1nxip)p1=λ∣∣xp3)三角不等式:
∑ i = 1 n ∣ x i + y i ∣ p = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i + y i ∣ ≤ ∑ i = 1 n ∣ x i + y i ∣ p − 1 ( ∣ x i ∣ + ∣ y i ∣ ) = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i ∣ + ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ y i ∣ ≤ [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ( p q = p q − q ; p , q > 1 ) = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 q \begin{aligned} & \quad\sum_{i=1}^n |x_i+y_i|^p \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i+y_i| \\\\ & \le\sum_{i=1}^n |x_i+y_i|^{p-1}(|x_i|+|y_i|) \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i|+\sum_{i=1}^n |x_i+y_i|^{p-1}|y_i| \\\\ & \le\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}} (pq=pq-q;p,q>1) \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}} \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{q}} \end{aligned} i=1nxi+yip=i=1nxi+yip1xi+yii=1nxi+yip1(xi+yi)=i=1nxi+yip1xi+i=1nxi+yip1yi[i=1nxi+yiq(p1)]q1(i=1nxip)p1+[i=1nxi+yiq(p1)]q1(i=1nyip)p1(pq=pqq;p,q>1)= (i=1nxip)p1+(i=1nyip)p1 [i=1nxi+yiq(p1)]q1= (i=1nxip)p1+(i=1nyip)p1 [i=1nxi+yip]q1上述证明过程前后应用了绝对值不等式与Holder不等式,进一步:
[ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 − 1 q = [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p > 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{1-\frac{1}{q}} =\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p>1) [i=1nxi+yip]1q1=[i=1nxi+yip]p1 (i=1nxip)p1+(i=1nyip)p1 (p>1) p = 1 p=1 p=1 时由绝对不等式知上述不等式同样成立,综上得证Minkowski不等式(闵可夫斯基不等式)
[ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p ≥ 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p\ge1) [i=1nxi+yip]p1 (i=1nxip)p1+(i=1nyip)p1 p1即,
∣ ∣ x + y ∣ ∣ p ≤ ∣ ∣ x ∣ ∣ p + ∣ ∣ y ∣ ∣ p ||{x}+{y}||_p\le||{x}||_p+||{y}||_p ∣∣x+yp∣∣xp+∣∣yp 最后说明,当 p → ∞ p\rightarrow\infty p 时, p − p- p范数满足最大范数的定义。采用夹逼定理求极限,由于
0 ≤ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ≤ ∑ i = 1 n ∣ x i ∣ p ≤ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) 0\le\max\limits_{1\le i\le n}|x_i|^p \le\sum_{i=1}^n |x_i|^p\le n\left(\max\limits_{1\le i\le n}|x_i|^p\right) 01inmaxxipi=1nxipn(1inmaxxip)
{ lim ⁡ p → ∞ ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ lim ⁡ p → ∞ [ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) ] 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ lim ⁡ p → ∞ n 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \begin{cases} \displaystyle{\lim_{p\rightarrow\infty}}\left(\max\limits_{1\le i\le n}|x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\\\\ \displaystyle{\lim_{p\rightarrow\infty}}\left[n\left(\max\limits_{1\le i\le n}|x_i|^p\right)\right]^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\lim_{p\rightarrow\infty}n^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \end{cases} plim(1inmaxxip)p1=1inmaxxiplim[n(1inmaxxip)]p1=1inmaxxiplimnp1=1inmaxxi
∣ ∣ x ∣ ∣ ∞ = lim ⁡ p → ∞ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ (证毕) ||{x}||_{\infty}=\lim_{p\rightarrow\infty}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \qquad\qquad\text{(证毕)} ∣∣x=plim(i=1nxip)p1=1inmaxxi(证毕)

3. 范数的等价

定义3-1:设 N ( E ) \mathcal{N}(E) N(E) 为所有定义在向量空间 E E E 上的范数构成的集合,对于 ∥ ⋅ ∥ ,   ∥ ⋅ ∥ × ∈ N ( E ) \lVert\cdot\rVert,~\lVert\cdot\rVert^\times\in\mathcal{N}(E) , ×N(E),若
∃   α , β ∈ R + ,   s . t .   α ∥ x ∥ × ⩽ ∥ x ∥ ⩽ β ∥ x ∥ × ,   f o r   ∀   x ∈ E \begin{equation*} \exist~\alpha,\beta\in\mathbb{R}^+,~s.t.~ \alpha\lVert{x}\rVert^\times \leqslant \lVert{x}\rVert \leqslant \beta\lVert{x}\rVert^\times ,~for~\forall~x\in{E} \end{equation*}  α,βR+, s.t. αx×xβx×, for  xE则称 范数 ∥ ⋅ ∥ \lVert\cdot\rVert ∥ ⋅ ∥ × \lVert\cdot\rVert^\times ×等价,记作: ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ × \lVert\cdot\rVert\sim\lVert\cdot\rVert^\times ×

定理3-1 :范数的等价具有传递性,即
∣ ∣ x ⃗ ∣ ∼ ∣ ∣ x ⃗ ∣ ∣ × ,   ∣ ∣ x ⃗ ∣ ∣ ∼ ∣ ∣ x ⃗ ∣ ∣ × × ⟹ ∣ ∣ x ∣ ∣ × ∼ ∣ ∣ x ∣ ∣ × × , ∀   x ∈ E \begin{equation*} ||\vec{x}|\sim||\vec{x}||^\times,~||\vec{x}||\sim||\vec{x}||^{\times\times} \Longrightarrow ||{x}||^\times\sim||{x}||^{\times\times} ,\qquad\forall~{x}\in{E} \end{equation*} ∣∣x ∣∣x ×, ∣∣x ∣∣∣∣x ××∣∣x×∣∣x××, xE

证明:若 ∣ ∣ x ⃗ ∣ ∣ ||\vec{x}|| ∣∣x ∣∣ ∣ ∣ x ⃗ ∣ ∣ × ||\vec{x}||^\times ∣∣x × 等价,且 ∣ ∣ x ⃗ ∣ ∣ ||\vec{x}|| ∣∣x ∣∣ ∣ ∣ x ⃗ ∣ ∣ × × ||\vec{x}||^{\times\times} ∣∣x ×× 等价,则 ∃   c i ∈ R ,   i = 1 , 2 , 3 , 4 \exist~c_i\in\mathbb{R},~i=1,2,3,4  ciR, i=1,2,3,4 使得 :
{   c 1 ∣ ∣ x ∣ ∣ ≤ ∣ ∣ x ∣ ∣ × ≤ c 2 ∣ ∣ x ∣ ∣   c 3 ∣ ∣ x ⃗ ∣ ∣ × × ≤ ∣ ∣ x ∣ ∣ ≤ c 4 ∣ ∣ x ⃗ ∣ × × , ∀   x ∈ E \begin{cases} \ c_1||{x}||\le||{x}||^\times\le c_2||{x}||\\[4mm] \ c_3||\vec{x}||^{\times\times}\le||{x}||\le c_4||\vec{x}|^{\times\times} ,\qquad\forall~{x}\in{E} \end{cases}  c1∣∣x∣∣∣∣x×c2∣∣x∣∣ c3∣∣x ××∣∣x∣∣c4∣∣x ××, xE那么,
c 1 c 3 ∣ ∣ x ∣ ∣ × × ≤ ∣ ∣ x ∣ ∣ × ≤ c 2 c 4 ∣ ∣ x ⃗ ∣ ∣ × × , ∀   x ∈ E c_1c_3||{x}||^{\times\times}\le||{x}||^\times\le c_2c_4||\vec{x}||^{\times\times} ,\qquad\forall~{x}\in{E} c1c3∣∣x××∣∣x×c2c4∣∣x ××, xE ∣ ∣ x ∣ ∣ × ||{x}||^\times ∣∣x× ∣ ∣ x ∣ ∣ × × ||{x}||^{\times\times} ∣∣x××等价。

定理3-2:定义在 R n \mathbb{R}^n Rn 上的 1 − 1- 1范数、 2 − 2- 2范数、 ∞ − \infty- 范数间满足:
∥ x ∥ ∞ ⩽ ∥ x ∥ 2 ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ ,   ∀   x ∈ R n \begin{equation} \lVert{x}\rVert_\infty \leqslant \lVert{x}\rVert_2 \leqslant \lVert{x}\rVert_1 \leqslant n\lVert{x}\rVert_\infty ,~\forall~x\in\mathbb{R}^n \end{equation} xx2x1nx,  xRn
∥ x ∥ 1 ∼ ∥ x ∥ 2 ∼ ∥ x ∥ ∞ \lVert{x}\rVert_1\sim\lVert{x}\rVert_2\sim\lVert{x}\rVert_\infty x1x2x

证明:显然
max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ≤ ∑ i = 1 n ∣ x i ∣ ≤ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ) ⟹ ∥ x ∥ ∞ ⩽ ∥ x ∥ 1 ⩽ n ∥ x ∥ ∞ \max\limits_{1\le i\le n}|x_i| \le\sum_{i=1}^n |x_i|\le n\left(\max\limits_{1\le i\le n}|x_i|\right) \Longrightarrow \lVert{x}\rVert_\infty\leqslant\lVert{x}\rVert_1\leqslant n\lVert{x}\rVert_\infty 1inmaxxii=1nxin(1inmaxxi)xx1nx
x 1 2 + x 2 2 + ⋯ + x N 2 ⩾ ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ) 2 = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ⟹ ∥ x ∥ ∞ ⩽ ∥ x ∥ 2 \sqrt{x_1^2+x_2^2+\dots+x_N^2}\geqslant\sqrt{\left(\max\limits_{1\le i\le n}|x_i| \right)^2}=\max\limits_{1\le i\le n}|x_i| \Longrightarrow \lVert{x}\rVert_\infty\leqslant\lVert{x}\rVert_2 x12+x22++xN2 (1inmaxxi)2 =1inmaxxixx2且根据 Cauchy-Bunjakovski 不等式(Cauchy–Schwarz 不等式)可得
x 1 2 + x 2 2 + ⋯ + x N 2 ≤ ( ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ ) 2 ⟹ ∣ ∣ x ∣ ∣ 2 ⩽ ∣ ∣ x ∣ ∣ 1 (证毕) x_1^2+x_2^2+\dots+x_N^2\le(|x_1|+|x_2|+\dots+|x_N|)^2 \Longrightarrow ||{x}||_2\leqslant||{x}||_1 \qquad\text{(证毕)} x12+x22++xN2(x1+x2++xN)2∣∣x2∣∣x1(证毕)

4. 距离与度量空间的定义

定义4-1:设 S S S 是非空集合(不一定是向量空间),若映射
d :   S × S → R :   ( x , y ) ↦ d ( x , y ) \begin{equation*} d:~S\times S\rightarrow\mathbb{R}:~(x,y)\mapsto{d(x,y)} \end{equation*} d: S×SR: (x,y)d(x,y)满足:

    ~~~     1) 正定性:   d ( x , y ) ⩾ 0 ~d(x,y)\geqslant0  d(x,y)0 ,当且仅当 x = y x=y x=y 时取等号;

    ~~~     2) 对称性:   d ( x , y ) = d ( y , x ) ~d(x,y)=d(y,x)  d(x,y)=d(y,x);

    ~~~     3) 三点不等式:   d ( x , y ) ⩽ d ( x , z ) + d ( z , y ) ~d(x,y)\leqslant d(x,z)+d(z,y)  d(x,y)d(x,z)+d(z,y).

d ( x , y ) d(x,y) d(x,y) x x x y y y 的距离,并 ( S , d ) (S,d) (S,d) 称为度量空间

定理4-1:对于赋范向量空间 ( E , ∥ ⋅ ∥ ) (E,\lVert\cdot\rVert) (E,∥),若取
d ( x , y ) ≜ ∥ x − y ∥ , ∀   x , y ∈ E \begin{equation} d(x,y)\triangleq\lVert{x-y}\rVert,\qquad\forall~x,y\in{E} \end{equation} d(x,y)xy, x,yE则在向量空间 E E E 上定义了距离 d ( x , y ) d(x,y) d(x,y),即赋范线性空间可视为度量空间,并将上式定义的 d ( x , y ) d(x,y) d(x,y) 称为由范数 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离。由范数 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离 d ( x , y ) d(x,y) d(x,y) 满足:
{ d ( x − y , 0 ) = ∣ ∣ ( x − y ) − 0 ∣ ∣ = ∣ ∣ x − y ∣ ∣ = d ( x , y ) d ( λ x , 0 ) = ∣ ∣ λ x − 0 ∣ ∣ = ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ⋅ ∣ ∣ x − 0 ∣ ∣ = ∣ λ ∣   d ( x , 0 ) (   ∀   x , y ∈ E ;   λ ∈ R ) \begin{cases} d(x-y,0)=||(x-y)-0||=||x-y||=d(x,y)\\[4mm] d(\lambda x,0)=||\lambda x-0||=||\lambda x||=|\lambda|\cdot||x-0||=|\lambda|~d(x,0) \quad(~\forall~x,y\in E;~\lambda\in\mathbb{R}) \end{cases} d(xy,0)=∣∣(xy)0∣∣=∣∣xy∣∣=d(x,y)d(λx,0)=∣∣λx0∣∣=∣∣λx∣∣=λ∣∣x0∣∣=λ d(x,0)(  x,yE; λR)

证明:验证给出的距离取法是否满足距离的定义 ,对 ∀   x , y , z ∈ E \forall~x,y,z\in{E}  x,y,zE

1)正定性: d ( x , y ) = ∣ ∣ x − y ∣ ∣ ≥ 0 , (当且仅当  x − y = 0 ⟹ x = y  时取等号) \begin{equation*} d(x,y)=||x-y||\ge0,\quad\text{(当且仅当 $x-y=0\Longrightarrow x=y$ 时取等号)} \end{equation*} d(x,y)=∣∣xy∣∣0,(当且仅当 xy=0x=y 时取等号)2)对称性: d ( x , y ) = ∣ ∣ x − y ∣ ∣ = ∣ ∣ − ( y − x ) ∣ ∣ = ∣ ∣ y − x ∣ ∣ = d ( y , x ) \begin{equation*} d(x,y)=||x-y||=||-(y-x)||=||y-x||=d(y,x) \end{equation*} d(x,y)=∣∣xy∣∣=∣∣(yx)∣∣=∣∣yx∣∣=d(y,x)3)三点不等式: d ( x , z ) + d ( z , y ) = ∣ ∣ x − z ∣ ∣ + ∣ ∣ z − y ∣ ∣ ≥ ∣ ∣ ( x − z ) + ( z − y ) ∣ ∣ = ∣ ∣ x − y ∣ ∣ = d ( x , y ) (证毕) \begin{equation*} d(x,z)+d(z,y)=||x-z||+||z-y||\ge||(x-z)+(z-y)||=||x-y||=d(x,y) \qquad\text{(证毕)} \end{equation*} d(x,z)+d(z,y)=∣∣xz∣∣+∣∣zy∣∣∣∣(xz)+(zy)∣∣=∣∣xy∣∣=d(x,y)(证毕)

定理4-2:设 ( S , d ) (S,d) (S,d) 为定义了距离的线性空间,若距离 d d d 满足:
{ d ( x − y , 0 ) = d ( x , y ) d ( λ x , 0 ) = ∣ λ ∣   d ( x , 0 ) (   ∀   x , y ∈ S ;   λ ∈ R ) \begin{cases} d(x-y,0)=d(x,y)\\[4mm] d(\lambda x,0)=|\lambda|~d(x,0) \quad(~\forall~x,y\in S;~\lambda\in\mathbb{R}) \end{cases} d(xy,0)=d(x,y)d(λx,0)=λ d(x,0)(  x,yS; λR)则可以取
∣ ∣ x ∣ ∣ ≜ d ( x , 0 ) , x ∈ S \begin{equation*} ||x||\triangleq d(x,0),\qquad x\in S \end{equation*} ∣∣x∣∣d(x,0),xS使得定义出的 ∥ ⋅ ∥ \lVert\cdot\rVert 为范数,并且使得 d d d 是由 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离。

证明:验证给出的范数取法是否满足范数的定义 ,对 ∀   x , y ∈ S ,   λ ∈ R \forall~x,y\in{S},~\lambda\in\mathbb{R}  x,yS, λR

1)正定性: ∣ ∣ x ∣ ∣ = d ( x , 0 ) ≥ 0 , (当且仅当  x = 0  时取等号) \begin{equation*} ||x||=d(x,0)\ge0,\quad\text{(当且仅当 $x=0$ 时取等号)} \end{equation*} ∣∣x∣∣=d(x,0)0,(当且仅当 x=时取等号)2)正齐次性: ∣ ∣ λ x ∣ ∣ = d ( λ x , 0 ) = ∣ λ ∣   d ( x , 0 ) = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ \begin{equation*} ||\lambda x||=d(\lambda x,0)=|\lambda|~d(x,0)=|\lambda|\cdot||x|| \end{equation*} ∣∣λx∣∣=d(λx,0)=λ d(x,0)=λ∣∣x∣∣3)三角不等式: ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ = d ( x , 0 ) + d ( y , 0 ) = d ( x , 0 ) + d ( − y , 0 ) = d ( x , 0 ) + d ( 0 , − y ) ≥ d ( x , − y ) = d ( x + y , 0 ) = ∣ ∣ x + y ∣ ∣ \begin{align*} ||x||+||y||&=d(x,0)+d(y,0)=d(x,0)+d(-y,0) \\[3mm] &=d(x,0)+d(0,-y)\ge d(x,-y)=d(x+y,0)=||x+y|| \end{align*} ∣∣x∣∣+∣∣y∣∣=d(x,0)+d(y,0)=d(x,0)+d(y,0)=d(x,0)+d(0,y)d(x,y)=d(x+y,0)=∣∣x+y∣∣故所取的范数形式满足范数的定义,即 S S S 可视为赋范线性空间。最后说明 d d d 是由 ∥ ⋅ ∥ \lVert\cdot\rVert 导出的距离:
∀   x , y ∈ S , d ( x , y ) = ∣ ∣ x − y ∣ ∣ = d ( x − y , 0 ) (证毕) \forall~x,y\in{S},\qquad d(x,y)=||x-y||=d(x-y,0)\qquad\text{(证毕)}  x,yS,d(x,y)=∣∣xy∣∣=d(xy,0)(证毕)

结合上述两条定理,可得如下包含关系

向量空间的包含关系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/96845.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

unity VS无法进行断点调试

有时候我们的VS无法进行断点调试,报错如下: 原因是:开启了多个项目,vs无法找到调式项目 解决:点击菜单栏--调试----附加unity调试程序 会弹出一个框,然后选择你要调试的项目 即可

SmokePing网络延迟和丢包监测工具

SmokePing是一种网络延迟和丢包监测工具,其监控原理如下: 监测目标选择:SmokePing通过配置文件(Targets)定义了要监测的目标,可以是主机、路由器、服务器或其他网络设备。每个目标都有一个唯一的名称和IP地…

实现带头双向循环链表

🌈带头双向循环链表 描述:一个节点内包含两个指针,一个指向上一个节点,另一个指向下一个节点。哨兵位指向的下一个节点为头节点,哨兵位的上一个指向尾节点。 结构优势:高效率找尾节点;高效率插入…

第60步 深度学习图像识别:误判病例分析(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期内容基于Tensorflow环境做了误判病例分析(传送门),考虑到不少模型在Tensorflow环境没有迁移学习的预训练模型,因此有必要在Pytorch环境也搞搞误判病例分析。 本期以SqueezeNet模型为…

uniapp 配置网络请求并使用请求轮播图

由于平台的限制,小程序项目中不支持 axios,而且原生的 wx.request() API 功能较为简单,不支持拦截器等全局定制的功能。因此,建议在 uni-app 项目中使用 escook/request-miniprogram 第三方包发起网络数据请求。 官方文档&#xf…

FPGA原理与结构——时钟IP核原理学习

一、前言 在之前的文章中,我们介绍了FPGA的时钟结构 FPGA原理与结构——时钟资源https://blog.csdn.net/apple_53311083/article/details/132307564?spm1001.2014.3001.5502 在本文中我们将学习xilinx系列的FPGA所提供的时钟IP核,来帮助我们进一…

数学建模:主成分分析法

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 主成分分析法 算法流程 构建原始数据矩阵 X X X ,其中矩阵的形状为 x ∗ n x * n x∗n ,有 m m m 个对象, n n n 个评价指标。然后进行矩阵的归一化处理。首先计算矩…

从过滤器初识责任链设计模式

下面用的过滤器都是注解方式 可以使用非注解方式,就是去web.xml配置映射关系 上面程序的执行输出是 再加一个过滤器 下面来看一段程序 输出结果 和过滤器是否非常相识 但是上面这段程序存在的问题:在编译阶段已经完全确定了调用关系,如果你想改变他们的调用顺序或者继续添加一…

ADRV9009子卡 设计原理图:FMCJ450-基于ADRV9009的双收双发射频FMC子卡 便携测试设备

FMCJ450-基于ADRV9009的双收双发射频FMC子卡 一、板卡概述 ADRV9009是一款高集成度射频(RF)、捷变收发器,提供双通道发射器和接收器、集成式频率合成器以及数字信号处理功能。北京太速科技,这款IC具备多样化的高性能和低功耗组合,FMC子…

uniapp的 picker 日期时间选择器

效果图&#xff1a; dateTimePicker.js function withData(param){return param < 10 ? 0 param : param; } function getLoopArray(start,end){var start start || 0;var end end || 1;var array [];for (var i start; i < end; i) {array.push(withData(i))…

QT登陆注册界面练习

一、界面展示 二、主要功能界面代码 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QMainWindow(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setFixedSize(540,410); //设置固定尺寸th…

CentOS 8 安装 Code Igniter 4

在安装好LNMP运行环境基础上&#xff0c;将codeigniter4文件夹移动到/var/nginx/html根目录下&#xff0c;浏览器地址栏输入IP/codeigniter/pulbic 一直提示&#xff1a; Cache unable to write to "/var/nginx/html/codeigniter/writable/cache/". 找了好久&…

nowcoder NC236题 最大差值

目录 题目描述&#xff1a; 示例1 示例2 题干解析&#xff1a; 暴力求解&#xff1a; 代码展示&#xff1a; 优化&#xff1a; 代码展示&#xff1a; 题目跳转https://www.nowcoder.com/practice/a01abbdc52ba4d5f8777fb5dae91b204?tpId128&tqId33768&ru/exa…

SpringBoot Mybatis 多数据源 MySQL+Oracle

一、背景 在SpringBoot Mybatis 项目中&#xff0c;需要连接 多个数据源&#xff0c;连接多个数据库&#xff0c;需要连接一个MySQL数据库和一个Oracle数据库 二、依赖 pom.xml <dependencies><dependency><groupId>org.springframework.boot</groupId&…

Windows:解决MySQL登录ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using passwor=YES)问题

我在下载的MySQL是8.0.32版本&#xff0c;刚下的时候没什么问题第二天启动MySQL服务就出现了 ERROR 1045 (28000): Access denied for user rootlocalhost (using password: YES) 或 ERROR 1045 (28000): Access denied for user rootlocalhost (using password: NO) 这样的问题…

十六、pikachu之SSRF

文章目录 1、SSRF概述2、SSRF&#xff08;URL&#xff09;3、SSRF&#xff08;file_get_content&#xff09; 1、SSRF概述 SSRF(Server-Side Request Forgery&#xff1a;服务器端请求伪造)&#xff1a;其形成的原因大都是由于服务端提供了从其他服务器应用获取数据的功能&…

【ES6】Getter和Setter

JavaScript中的getter和setter方法可以用于访问和修改对象的属性。这些方法可以通过使用对象字面量或Object.defineProperty()方法来定义。 以下是使用getter和setter方法的示例&#xff1a; <!DOCTYPE html> <script>const cart {_wheels: 4,get wheels(){retu…

利用torchvision库实现目标检测与语义分割

一、介绍 利用torchvision库实现目标检测与语义分割。 二、代码 1、目标检测 from PIL import Image import matplotlib.pyplot as plt import torchvision.transforms as T import torchvision import numpy as np import cv2 import randomCOCO_INSTANCE_CATEGORY_NAMES …

【计算机组成原理】一文快速入门,很适合JAVA后端看

作者简介&#xff1a; CSDN内容合伙人、CSDN新星计划导师、JAVA领域优质创作者、阿里云专家博主&#xff0c;计算机科班出身、多年IT从业经验、精通计算机核心理论、Java SE、Java EE、数据库、中间件、分布式技术&#xff0c;参加过国产中间件的核心研发&#xff0c;对后端有…

怎么把pdf图片转换成jpg?pdf转jpg的方法分享

pdf文件在我们的日常工作中非常的常见&#xff0c;因为这种文件安全性高&#xff0c;不会轻易的乱码&#xff0c;所以受到了我们的欢迎&#xff0c;但是它不容易被编辑&#xff0c;而且占用内存会比较大&#xff0c;所以我们需要将pdf文件进行转换&#xff0c;接下来小编会为大…