【翻译+论文阅读】DeepSeek-R1评测:粉碎GPT-4和Claude 3.5的开源AI革命

目录

  • 一、DeepSeek-R1 势不可挡
  • 二、DeepSeek-R1 卓越之处
  • 三、DeepSeek-R1 创新设计
  • 四、DeepSeek-R1 进化之路
    • 1. 强化学习RL代替监督微调学习SFL
    • 2. Aha Moment “啊哈”时刻
    • 3. 蒸馏版本仅采用SFT
    • 4. 未来研究计划

部分内容有拓展,部分内容有删除,与原文会有差异,建议结合原文、参考及视频整体阅读。
英文标题:Deepseek-R1 Review : Open Source AI Revolution Crushing GPT-4 and Claude 3.5
原文链接:https://www.geeky-gadgets.com/deepseek-r1-review/
创作者:Julian Horsey
发布时间:2025.1.28
视频来源:《Deepseek-R1 (Tested): BEST LLM EVER That’s Opensource? AGI IS HERE! (Beats O1 & 3.5 Sonnet)》(YouTube,链接不挂了,自行搜索WorldofAI)
参考文献包括但不限于:

  • DeepSeek-AI, “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,” 2025.
  • deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?
  • 全世界最强的算法平台codeforces究竟有什么魅力?
  • David Rein, B., et al, “GPQA: A Graduate-Level Google-Proof Q&A Benchmark,” 2023. Hunter Lightman, V., et al, “Let’s Verify Step by Step,” 2023.
  • https://paperswithcode.com/dataset/mmlu
  • Carlos E. Jimenez, J., et al, “SWE-bench: Can Language Models Resolve Real-World GitHub Issues?,” 2024.

在这里插入图片描述

一、DeepSeek-R1 势不可挡

新的AI大模型 Deepseek-R1 正在席卷全球,为开源大型语言模型(LLMs)树立了新的基准。该模型在多个任务上与 OpenAI O1、GPT-4 Omni 和 Claude 3.5 Sonnet 等有与之相当甚至更为优秀的表现。基于MIT 许可证(更宽松的软件许可)、经济实惠性和先进的功能,Deepseek-R1 正在改变 AI 技术的可访问性和实际应用。在World of AI 的这篇深入评测视频中,可以从更专业角度了解这个新开源的 AI 模型。
Deepseek-R1 在编程、数学和多语言任务等关键领域超越行业巨头 OpenAI 的 O1 和 GPT-4 Omni,证明了开源创新(open source innovation)可以与专有解决方案(proprietary solutions)相媲美,甚至超越它们。
在这里插入图片描述

在这里插入图片描述

问:
如何衡量大模型在各个任务上的性能?测试数据库如何构建?上面的条形图中横坐标都是针对什么领域的测试数据集?
答:

  1. 性能评估:让模型尝试解决这些问题,记录正确性或得分,如果是程序,则验证是否可以正确运行并解决问题。
  2. 数据库构建:收集问题👉问题预处理(格式化、清洗、标注正确答案)👉数据库更新;
  3. 条图横坐标:Pass@1表示第一次尝试就正确解决问题的比例;Percentile表示百分比。
    3.1 AIME 2024 (American Invitational Mathematics Examination 2024):美国人邀请赛数学竞赛。该竞赛由美国数学协会(MAA)管理。AIME是通往美国数学奥林匹克竞赛(USAMO)或美国初级数学奥林匹克竞赛(USAJMO)的第二阶段考试,这些竞赛是选拔参加国际数学奥林匹克(IMO)队伍的系列考试的一部分。AIME包括15个问题,考试时间为3小时,每个答案都是一个介于0到999之间的整数。旨在挑战学生的数学问题解决能力,涵盖算术、代数、计数、几何、数论和概率等中学数学主题。通常,考试中的问题需要创造性地使用中学课程知识,或者理解不同数学领域如何结合在一起来调查和解决问题。错误答案不会扣分,但正确答案会获得一分,因此最高分是15分。
    3.2 Codeforces :国外著名编程竞赛平台,评估大模型的算法和编程能力。2小时竞赛,每周一两次,代码和程序均公开(很有意思的网站),题目兼容并蓄,思维陷阱较多。
    3.3 GPOA Diamond :由198个问题组成的高质量问答数据集,仅包括专家正确答案和大多数非专家的问题。与主集GPQA(由生物学,物理和化学专家撰写的448个多项选择问题)类似,还包括第二个专家验证者犯有可证明的错误的问题。但是,Diamond的要求更加严格,要求第一个专家验证者必须正确回答,然后第二个专家验证者错误回答,但他们清楚地描述了对问题作者的解释的错误或理解。
    3.4 Math 500:OpenAI在其Let‘s Verify Step by Step论文中的作为数学基准的评估子集,包含500个问题。
    3.5 MMLU(Massive Multitask Language Understanding):大规模多任务语言理解,基准涵盖了跨STEM,人文,社会科学等57个主题。它的难度从基础级别到高级专业水平,并且可以测试世界知识和解决问题的能力。paperwithcode上的leaderboard还没更新。
    3.6 SWE-bench:涉及软件工程(SWE)相关的基准测试,"Resolved"表示模型成功解决的问题比例。该框架由2,294个软件工程问题组成,包含来自12个流行的Python存储库中的GitHub问题,这些存储库报告了错误或请求新功能,并提取对存储库进行更改以解决这些问题的请求。

但真正让 Deepseek-R1 独树一帜的不仅仅是它的性能,还有它的可访问性和经济实惠性。上周末,DeepSeek App下载量在 Android 和 Apple 应用商店中均位居第一,受欢迎程度足以体现。无论是寻找成本效益高的工具的独立开发者,还是寻求可扩展 AI 解决方案的组织,Deepseek-R1 都提供了一个让先进AI技术触手可及的未来。

二、DeepSeek-R1 卓越之处

  • Deepseek-R1 作为新的开源 AI 大模型,在多个任务上与 OpenAI O1、GPT-4 Omni 和 Claude 3.5 Sonnet 等有与之相当甚至更为优秀的表现。
  • 该模型使用 MIT 许可证,比 OpenAI O1 等专有模型便宜 30 倍,比 ChatGPT 成本效益高 96.4%。
  • 该模型支持高达 128k 的令牌数用于处理大规模数据集,并通过 API、LM Studio 和本地工具(如 Ollama)提供部署灵活性(最大生成长度为32768个tokens )
  • 提供基于OWEN的蒸馏版本,开放适用于要求响应速度快、硬件资源有限的1.5B-7B版本、适用于对模型性能有要求但无超高配置的8B-14B版本、以及适用于专业问答系统、中规模创作平台的32B-70B版本,满足多样化用户需求。
  • 其先进功能涵盖编码、数学、多语言处理、设计和总结,使其成为开发者、研究人员和跨行业组织的多功能工具。

蒸馏版本模型性能对比
在这里插入图片描述

没有人比我的MateBook2018D性能还要差的电脑吧,我测试了下本地部署,7B运转很慢,1.5B速度与网页访问答题一样。最大的优点是不会因为服务器繁忙而卡住,还可以创建私人管家,当然回答的准确性比不上671B模型。

三、DeepSeek-R1 创新设计

DeepSeek-R1 的卓越表现植根于其创新架构和先进的训练方法。
(这一段作者笔误或者错误描述了训练阶段,故删除并重新整理)
该模型的核心创新体现在群体相对策略优化(GRPO)和强化学习的多阶段训练方法上,其训练分为四个阶段:

  1. 冷启动:构建并收集了少量的长COT数据,通过监督微调(SFT)作为初始RL Actor,提升基础模型的可读性;
  2. 面向推理的增强学习:着重于增强模型的推理能力,尤其是在诸如编码,数学,科学和逻辑推理等推理密集型任务中,这些任务涉及清晰解决方案的明确问题。为减轻语言混合问题,引入语言一致性奖励;
  3. 拒绝抽样和监督微调:利用所得检查点收集SFT(有监督的微调)数据,以进行后续回合。与主要侧重于推理的初始冷启动数据不同,此阶段包含了来自其他域的数据,以增强模型在书写,角色扮演和其他通用任务中的功能;
  4. 所有情况加强学习:再次结合基于规则和结果的奖励模型,使用GRPO进行优化,以在复杂和细微的方案中捕获人类的偏好。为了结果有帮助,专注于最终摘要,确保评估强调对用户响应的效用和相关性,同时最大程度地减少对基本推理过程的干扰。对于无害性,评估了模型的全部响应,包括推理过程和摘要,以识别和减轻在生成过程中可能出现的任何潜在风险,偏见或有害内容。

DeepSeek-R1正式确诊为“为人民服务”!

Deepseek-R1 最吸引人的地方之一是其可访问性。它在 MIT 许可证下发布,可供个人、开发者和组织免费使用,这种开源精神与通常伴随高成本和限制性使用条款的专有模型形成了鲜明对比 :)

四、DeepSeek-R1 进化之路

翻译原文无此部分,为论文阅读+个人理解
论文里描述了DeepSeek-R1-Zero和DeepSeek-R1的设计框架和任务性能。前者表现出强大而有趣的推理性能,但是也遇到了挑战,包括可读性差和语言混合;为了解决这些问题并进一步提高性能,DeepSeek-R1诞生,在强化学习之前结合了多阶段训练和冷启动数据。

1. 强化学习RL代替监督微调学习SFL

强化学习基本框架

  • Agent:ML 算法(或自治系统)
  • Environment:具有变量、边界值、规则和有效操作等属性的自适应问题空间
  • Action:Agent在Environment中导航时采取的步骤
  • State:给定时间点的环境
  • Reward:执行Action的正值、负值或零值,即奖励或惩罚

DeepSeek-R1使用的强化学习框架为GRPO(Group Relative Policy Optimization)(Shao et al., 2024),探讨了LLM在没有任何监督数据的情况下发展推理能力的潜力,着重于模型自身的进化。在奖励方面,DeepSeek-R1-Zero采用了基于规则的奖励系统,由准确性奖励和格式奖励共同构成。准确性奖励评估响应是否正确,格式奖励则强调使用在< think > < /think >描述思维过程。这种结构的好处是避免了特定于内容的偏见,例如强制反思性推理或促进特定的问题解决策略,并能够准确观察模型的自然发展(开了上帝视角去理解生物为什么、怎么样进化)。为了避免大规模黑客攻击和降低重训练成本,不采用过程奖励或者回答奖励。

< think >< /think >,我理解即将Chain-of-Thought(COT)思维链显示地提供给用户,KIMI的k1.5 loong thinking也支持,相较于DP比较口语化,速度快,能够自行折叠,产品体验上比DP好,但是编程性能次之)。
强制反思性推理,指在生成回答前,检查问题逻辑、选择回答策略、定制回答风格等等,可能需要更多的算力支撑,减少了错误和偏见,但是对于一味求快求解的用户来说并不好用。
特定于内容的偏见,偏向于某一种特定的问题解决方法,例如:教导学生只用节点法做电路题目,在绘制等效电路图、分析串并联时比较容易,但对于实物连接,就没有必要甚至会带来困惑。

2. Aha Moment “啊哈”时刻

在训练的中间阶段,DeepSeek-R1-Zero学会通过重新评估其初始方法来分配更多的思维时间来解决问题,适用拟人化音调重新考虑(Like人类在滔滔不绝中突然说:“等等,我想到了另一点”,而非按照旧的思路说到底,这一点实在非常可爱)。
在这里插入图片描述

3. 蒸馏版本仅采用SFT

蒸馏版本如前面的1.5B、70B,是直接用R1的800K样本微调开源的Qwen和Llama两个较小规模的LLM,且仅应用SFT,不包含RL阶段。其中,1.5B版本在数学基准评估上能过胜过GPT-4o和Claude 3.5 Sonnet(本地部署的孩子,数学作业有救了)。作者表示主要是展示有效性,并希望专业研究进一步探索RL阶段。通过对比大模型蒸馏后与不蒸馏使用大规模RL训练的小模型,发现后者的性能并不如前者,尽管蒸馏策略经济有效,但想要突破上限需要更大的基础模型及大规模RL。

4. 未来研究计划

  • 基于COT高效增强在函数调用、多轮问答(multi-turn)、复杂角色扮演以及JSON程序输出等任务上的处理效果;
  • 突破除了中文和英文外,其他语言混合问题的限制;
  • 提示敏感问题(改变Prompt的措辞、结构、内容会导致生成的回答截然不同),只让模型进行一次尝试(one-shot)时,生成的答案容易出错;而多次尝试(multi-shot)并尝试后验证并调整,生成的答案更加准确。作者建议直接描述问题,采用zero-shot(直接告诉任务,不提供任何示例),让模型只依赖于预训练结果。
  • 软件工程任务验证时间较长,影响RL效率。未来会使用拒绝采样、异步评估来提升效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967371.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

关于 IoT DC3 中设备(Device)的理解

在物联网系统中&#xff0c;设备&#xff08;Device&#xff09;是一个非常宽泛的概念&#xff0c;它可以指代任何能够接入系统并进行数据交互的实体。包括但不限于手机、电脑、服务器、网关、硬件设备甚至是某些软件程序等所有能接入到该平台的媒介。 内容 定义 目的 示例 …

Ubuntu22.04 配置deepseek知识库

文章目录 安装 docker配置 dify配置 ollama创建大模型 安装 docker 更新系统&#xff1a;sudo apt update sudo apt upgrade -y安装必要的依赖&#xff1a;sudo apt install apt-transport-https ca-certificates curl software-properties-common -y添加 Docker 的官方 GPG 密…

【AIGC】冷启动数据与多阶段训练在 DeepSeek 中的作用

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;冷启动数据的作用冷启动数据设计 &#x1f4af;多阶段训练的作用阶段 1&#xff1a;冷启动微调阶段 2&#xff1a;推理导向强化学习&#xff08;RL&#xff0…

LSTM的介绍

网上一些描述LSTM文章看的云里雾里&#xff0c;只是介绍LSTM 的结构&#xff0c;并没有说明原理。我这里用通俗易懂的话来描述一下。 我们先来复习一些RNN的核心公式&#xff1a; h t t a n h ( W h h t − 1 W x x t b h ) h_t tanh(W_h h_{t-1} W_x x_t b_h) ht​tan…

推荐一款 免费的SSL,自动续期

支持自动续期 、泛域名 、可视化所有证书时效性 、可配置CDN 的一款工具。免费5个泛域名和1个自动更新。 链接 支持&#xff1a;nginx、通配符证书、七牛云、腾讯云、阿里云、CDN、OSS、LB&#xff08;负载均衡&#xff09; 执行自动部署脚本 提示系统过缺少crontab 安装cro…

RTD2775QT/RTD2795QT瑞昱显示器芯片方案

RTD2775QT与RTD2795QT&#xff1a;高性能4K显示驱动芯片 RTD2775QT与RTD2795QT是瑞昱半导体公司推出的两款高性能显示驱动芯片&#xff0c;专为满足现代显示设备对高清、高分辨率的需求而设计。这两款芯片不仅支持4K分辨率&#xff0c;还具备丰富的功能和卓越的性能&#xff0…

Windows逆向工程入门之汇编环境搭建

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 Visual Studio逆向工程配置 基础环境搭建 Visual Studio 官方下载地址安装配置选项(后期可随时通过VS调整) 使用C的桌面开发 拓展可选选项 MASM汇编框架 配置MASM汇编项目 创建新项目 选择空…

活动预告 |【Part1】Microsoft Azure 在线技术公开课:AI 基础知识

课程介绍 参加“Azure 在线技术公开课&#xff1a;AI 基础知识”活动&#xff0c;了解 AI 核心概念。参加我们举办的本次免费培训活动&#xff0c;了解组织如何使用 AI 技术克服实际挑战&#xff0c;以及如何借助 Azure AI 服务构建智能应用程序。本次培训适用于任何对 AI 解决…

小程序生命周期函数,wxs

1.扩展自定义编译模式 2.生命周期函数概念与分类 3.应用生命周期函数 4.页面生命周期函数 5.wxs的概念 6.wxs基本用法 6.1内嵌wxs脚本 6.2定义外联的wxs脚本 6.3使用外联的wxs脚本 7.wxs特点

StochSync:可在任意空间中生成360°全景图和3D网格纹理

StochSync方法可以用于在任意空间中生成图像&#xff0c;尤其是360全景图和3D网格纹理。该方法利用了预训练的图像扩散模型&#xff0c;以实现零-shot生成&#xff0c;消除了对新数据收集和单独训练生成模型的需求。StochSync 结合了 Diffusion Synchronization&#xff08;DS&…

免费在腾讯云Cloud Studio部署DeepSeek-R1大模型

2024年2月2日&#xff0c;腾讯云宣布DeepSeek-R1大模型正式支持一键部署至腾讯云HAI&#xff08;高性能应用服务&#xff09;。开发者仅需3分钟即可完成部署并调用模型&#xff0c;大幅简化了传统部署流程中买卡、装驱动、配网络、配存储、装环境、装框架、下载模型等繁琐步骤。…

基于Flask搭建AI应用,本地私有化部署开源大语言模型

一、概述 随着人工智能技术的飞速发展&#xff0c;越来越多的企业和开发者希望在本地环境中部署和使用大语言模型&#xff0c;以确保数据隐私和安全性。本文将介绍如何基于Flask框架搭建一个AI应用&#xff0c;并在本地私有化部署开源的大语言模型。 二、背景 大语言模型&…

[小白入门]PostgreSQL too many clients already

场景 PostgreSQL 遇到too many clients already 连接 PostgreSQL 数据库时&#xff0c;突然遭遇到了一个报错&#xff1a;“FATAL: sorry, too many clients already”。这一错误提示表明数据库连接数已经达到上限&#xff0c;无法再创建新连接。 分析 可以通过以下几个SQL查…

WEB小项目--自动轮播图

目录 目的 代码 技术细节 1. HTML结构 基本结构 具体内容 内容布局 2. CSS样式 3. JavaScript功能 小结 目的 为了在用户浏览网页时制造更好的视觉效果和交互体验 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"…

LabVIEW图像水印系统

图像水印技术在数字图像处理中起着重要作用&#xff0c;它能够保护图像的版权、确保图像的完整性&#xff0c;并提供额外的信息嵌入。本项目旨在利用LabVIEW开发一个图像水印系统&#xff0c;实现图像水印的嵌入和提取功能&#xff0c;为数字图像处理提供便捷的工具。 一、项目…

Mp4视频播放机无法播放视频-批量修改视频分辨率(帧宽、帧高)

背景 家人有一台夏新多功能 视频播放器(夏新多功能 视频播放器),用来播放广场舞。下载了一些广场舞视频, 只有部分视频可以播放,其他视频均无法播放,判断应该不是帧速率和数据速率的限制, 分析可能是播放器不支持帧高度大于720的视频。由于视频文件较多,需要借助视频编…

git rebase 和 git merge的区别

Rebase 可使提交树变得很干净, 所有的提交都在一条线上。 Merge 则是包含所有的调试记录&#xff0c;合并之后&#xff0c;父级的所有信息都会合并在一起 Rebase 修改了提交树的历史 比如, 提交 C1 可以被 rebase 到 C3 之后。这看起来 C1 中的工作是在 C3 之后进行的&#xf…

Day38-【13003】短文,二叉树,完全二叉树,二叉树的顺序存储,和链式存储

文章目录 第二节 二叉树二叉树的定义及重要性质n个结点&#xff0c;能组合成多少个不同的二叉树满二叉树、完全二叉树完全二叉树的性质二叉树的性质二叉树的结点数完全二叉树的高度 二叉树的存储顺序存储方式链式存储方式二叉链表的程序实现二叉链表空指针域计算 第二节 二叉树…

echarts 3d中国地图飞行线

一、3D中国地图 1. 一定要使用 echarts 5.0及以上的版本; 2. echarts 5.0没有内置中国地图了。点击下载 china.json&#xff1b; 3. 一共使用了四层地图。 &#xff08;1&#xff09;第一层是中国地图各省细边框和展示南海诸岛&#xff1b; &#xff08;2&#xff09;第二层是…

傅里叶公式推导(一)

文章目录 三角函数系正交证明图观法数学证明法计算当 n不等于m当 n等于m&#xff08;重点&#xff09; 其它同理 首先要了解的一点基础知识&#xff1a; 三角函数系 { sin ⁡ 0 , cos ⁡ 0 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , … , sin ⁡ n x , cos ⁡ n x ,…