SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现

SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现

目录

    • SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优化学习率,卷积核的数量,正则化系数);

2.运行环境Matlab2021及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;
以上运行环境Matlab2023及以上。
直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信回复SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现。


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/967332.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DeepSeek 助力 Vue 开发:打造丝滑的步骤条

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 Deep…

利用二分法进行 SQL 盲注

什么是sql注入? SQL 注入(SQL Injection)是一种常见的 Web 安全漏洞,攻击者可以通过构造恶意 SQL 语句来访问数据库中的敏感信息。在某些情况下,服务器不会直接返回查询结果,而是通过布尔值(Tr…

USB子系统学习(四)用户态下使用libusb读取鼠标数据

文章目录 1、声明2、HID协议2.1、描述符2.2、鼠标数据格式 3、应用程序4、编译应用程序5、测试6、其它 1、声明 本文是在学习韦东山《驱动大全》USB子系统时,为梳理知识点和自己回看而记录,全部内容高度复制粘贴。 韦老师的《驱动大全》:商…

数据安全:守护数据的坚固防线

在数字化时代,数据已成为企业和组织的核心资产。然而,数据的安全性问题也日益凸显,数据泄露、数据滥用等事件频发,给企业和个人带来了巨大的损失。今天,让我们深入《DAMA数据管理知识体系指南(第二版&#…

PyQt学习记录

0. 安装配置 0.1 安装相关库 首先打开你的PyCharm程序,然后新建一个目录用于学习,其次在terminal中输入 pip install pyqt5如果你不具有科学上网能力,请改为国内源 pip install pyqt5 -i https://pypi.douban.com/simple然后安装pyqt相关…

对“云原生”的初印象

一、背景 最近因为在工作中以及一些技术博客中听的比较火的一个关键词 "云原生",于是产生了好奇,云原生到底是什么东西?自己对云原生也是一个纯小白,于是带着这个问题去好好了解一下,什么是"云原生&qu…

SystemVerilog基础:disable fork语句

相关阅读 SystemVerilog基础https://blog.csdn.net/weixin_45791458/category_12517449.html?spm1001.2014.3001.5482 一、进程的概念 在学习disable fork语句之前,首先的了解SystemVerilog中的进程概念:进程是一系列可以独立执行的一个或多个表达式。…

富芮坤FR8003硬件:VDDIO供电有工作不正常的情况从VBAT供电正常

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…

IBM服务器刀箱Blade安装Hyper-V Server 2019 操作系统

案例:刀箱某一blade,例如 blade 5 安装 Hyper-V Server 2019 操作系统(安装进硬盘) 刀箱USB插入安装系统U盘,登录192.168... IBM BlandeCenter Restart Blande 5,如果Restart 没反应,那就 Power Off Blade 然后再 Power On 重启后进入BIOS界面设置usb存储为开机启动项 …

【大模型】本地部署DeepSeek-R1:8b大模型及搭建Open-WebUI交互页面

本地部署DeepSeek-R1:8b大模型 一、摘要及版本选择说明1.1 摘要1.2 版本选择 二、下载并安装Ollama三、运行DeepSeek-R1:8b大模型四、安装Open WebUI增强交互体验五、关闭Ollama开机自动启动六、DeepSeek大模型启停步骤 一、摘要及版本选择说明 1.1 摘要 作为一名对 AI 和生成…

6、使用one-api管理统一管理大模型,并开始使用本地大模型

文章目录 本节内容介绍集中接入:将大模型统一管理起来当使用了大模型代理大模型代理示例 开源模型:如何使用Hugging Face上的模型modelscope使用 pipeline 调用模型用底层实现调用模型流式输出 如何在项目中使用开源模型使用 LangChain使用集中接入开始使…

绕组电感 - Ansys Maxwell 磁通链与电流

在本博客中,我将演示如何使用 Ansys Maxwell 中磁瞬态求解器的磁通链和电流结果来计算绕组电感。Ansys Maxwell 磁瞬态求解器在场计算中考虑了涡流效应,我将展示一种使用磁通链和电流结果来计算绕组电感的简单方法。 实际上,电感是非线性的…

【图片转换PDF】多个文件夹里图片逐个批量转换成多个pdf软件,子文件夹单独合并转换,子文件夹单独批量转换,基于Py的解决方案

建筑设计公司在项目执行过程中,会产生大量的设计图纸、效果图、实景照片等图片资料。这些资料按照项目名称、阶段、专业等维度存放在多个文件夹和子文件夹中。 操作需求:为了方便内部管理和向客户交付完整的设计方案,公司需要将每个项目文件…

Formality:探针(Probe Point)的设置与使用

相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482 一般情况下,verify命令会对参考设计和实现设计所有匹配的比较点各自进行验证,但有些时候为了调试,可能需要验证参考设计和实现设…

Cherry Studio之DeepSeek联网/本地,建属于自己的AI助理!

上一篇文章,讲了DeepSeek-R1部署到本地的方法。这一篇文章,我们让DeepSeek再一次升级,通过图形化界面来交互,从而变成我们的AI助理,让DeepSeek R1发挥最大实力! 首选需要借助硅基流动的API接口&#xff0c…

HarmonyOS Next 方舟字节码文件格式介绍

在开发中,可读的编程语言要编译成二进制的字节码格式才能被机器识别。在HarmonyOS Next开发中,arkts会编译成方舟字节码。方舟字节码长什么样呢?我们以一个demo编译出的abc文件: 二进制就是长这样,怎么去理解呢&…

AMD 8845HS 780M核显部署本地deepseek大模型的性能

测试了一下笔记本电脑AMD 8845HS的780M核显是否能本地部署deepseek大模型。 测试软件环境:LM Studio 0.3.9 、Windows 11 24H2 硬件:荣耀X16笔记本 CPU:AMD 8845HS 显卡:780M核显,显存为共享内存自动分配模式&…

实验7 路由器之间IPsec VPN配置

实验7 路由器之间IPsec VPN配置 1.实验目的 通过在两台路由器之间配置IPsec VPN连接,掌握IPsec VPN配置方法,加深对IPsec协议的理解。 2.实验内容 (1)按照实验拓扑搭建实验环境。 (2)在路由器R1和R4配置IP…

【FPGA】模型机下载FPGA设计

目录 模型机下载FPGA设计 框架 仿真 代码 MIOC.v IO.v SoC.v 模型机下载FPGA设计 32位MIPS地址空间采用内存与IO统一编址方式,总共232个存储单元,每个单元默认存放1个字节,即总共4GB。划分为:用户空间和内核空间。 (1)…

【真一键部署脚本】——一键部署deepseek

目录 deepseek一键部署脚本说明 0 必要前提 1 使用方法 1.1 使用默认安装配置 1.1 .1 使用其它ds模型 1.2 使用自定义安装 2 附录:deepseek模型手动下载 3 脚本下载地址 deepseek一键部署脚本说明 0 必要前提 linux环境 python>3.10 1 使用方法 1.1 …